{"title":"采用超宽带脉冲无线电的无线传感器异步通信","authors":"Qisong Hu, Chen Yi, J. Kliewer, Wei Tang","doi":"10.1109/MWSCAS.2015.7282170","DOIUrl":null,"url":null,"abstract":"This paper addresses simulations and design of an asynchronous integrated ultra wideband impulse radio transmitter and receiver suitable for low-power miniaturized wireless sensors. This paper first presents software simulations for asynchronous transmission over noisy channels using FSK-OOK modulation, which demonstrates that the proposed architecture is capable to communicate reliably at moderate signal-to-noise ratios and that the main errors are due to deletions of received noisy transmit pulses. Then, we address a hardware chip implementation of the integrated UWB transmitter and receiver, which is fabricated using an IBM 0.18μm CMOS process. This implementation provides a low peak power consumption, i.e., 10.8 mW for the transmitter and 5.4 mW for the receiver, respectively. The measured maximum baseband data rate of the proposed radio is 2.3 Mb/s.","PeriodicalId":216613,"journal":{"name":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Asynchronous communication for wireless sensors using ultra wideband impulse radio\",\"authors\":\"Qisong Hu, Chen Yi, J. Kliewer, Wei Tang\",\"doi\":\"10.1109/MWSCAS.2015.7282170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses simulations and design of an asynchronous integrated ultra wideband impulse radio transmitter and receiver suitable for low-power miniaturized wireless sensors. This paper first presents software simulations for asynchronous transmission over noisy channels using FSK-OOK modulation, which demonstrates that the proposed architecture is capable to communicate reliably at moderate signal-to-noise ratios and that the main errors are due to deletions of received noisy transmit pulses. Then, we address a hardware chip implementation of the integrated UWB transmitter and receiver, which is fabricated using an IBM 0.18μm CMOS process. This implementation provides a low peak power consumption, i.e., 10.8 mW for the transmitter and 5.4 mW for the receiver, respectively. The measured maximum baseband data rate of the proposed radio is 2.3 Mb/s.\",\"PeriodicalId\":216613,\"journal\":{\"name\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2015.7282170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2015.7282170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asynchronous communication for wireless sensors using ultra wideband impulse radio
This paper addresses simulations and design of an asynchronous integrated ultra wideband impulse radio transmitter and receiver suitable for low-power miniaturized wireless sensors. This paper first presents software simulations for asynchronous transmission over noisy channels using FSK-OOK modulation, which demonstrates that the proposed architecture is capable to communicate reliably at moderate signal-to-noise ratios and that the main errors are due to deletions of received noisy transmit pulses. Then, we address a hardware chip implementation of the integrated UWB transmitter and receiver, which is fabricated using an IBM 0.18μm CMOS process. This implementation provides a low peak power consumption, i.e., 10.8 mW for the transmitter and 5.4 mW for the receiver, respectively. The measured maximum baseband data rate of the proposed radio is 2.3 Mb/s.