基于回归的蒸馏器提高PUF安全性

C. Yin, G. Qu
{"title":"基于回归的蒸馏器提高PUF安全性","authors":"C. Yin, G. Qu","doi":"10.1145/2463209.2488960","DOIUrl":null,"url":null,"abstract":"Silicon physical unclonable functions (PUF) utilize fabrication variation to extract information that will be unique for each chip. However, fabrication variation has a very strong spatial correlation and thus the PUF information will not be statistically random, which causes security threats to silicon PUF. We propose to decouple the unwanted systematic variation from the desired random variation through a regression-based distiller. In our experiments, we show that information generated by existing PUF schemes fail to pass NIST randomness test. However, our proposed method can provide statistically random PUF information and thus bolster the security characteristics of existing PUF schemes.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Improving PUF security with regression-based distiller\",\"authors\":\"C. Yin, G. Qu\",\"doi\":\"10.1145/2463209.2488960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon physical unclonable functions (PUF) utilize fabrication variation to extract information that will be unique for each chip. However, fabrication variation has a very strong spatial correlation and thus the PUF information will not be statistically random, which causes security threats to silicon PUF. We propose to decouple the unwanted systematic variation from the desired random variation through a regression-based distiller. In our experiments, we show that information generated by existing PUF schemes fail to pass NIST randomness test. However, our proposed method can provide statistically random PUF information and thus bolster the security characteristics of existing PUF schemes.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

硅物理不可克隆函数(PUF)利用制造变化来提取每个芯片独有的信息。然而,由于制造变化具有很强的空间相关性,因此PUF信息不会是统计随机的,这对硅PUF造成了安全威胁。我们建议通过基于回归的蒸馏器将不需要的系统变化与期望的随机变化解耦。在我们的实验中,我们发现现有PUF方案生成的信息无法通过NIST随机性测试。然而,我们提出的方法可以提供统计随机的PUF信息,从而增强现有PUF方案的安全特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving PUF security with regression-based distiller
Silicon physical unclonable functions (PUF) utilize fabrication variation to extract information that will be unique for each chip. However, fabrication variation has a very strong spatial correlation and thus the PUF information will not be statistically random, which causes security threats to silicon PUF. We propose to decouple the unwanted systematic variation from the desired random variation through a regression-based distiller. In our experiments, we show that information generated by existing PUF schemes fail to pass NIST randomness test. However, our proposed method can provide statistically random PUF information and thus bolster the security characteristics of existing PUF schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信