稀疏建模和优化工具,用于节能和可靠的物联网

Stavros Nousias, A. Lalos, A. Kalogeras, Christos E. Alexakos, C. Koulamas, K. Moustakas
{"title":"稀疏建模和优化工具,用于节能和可靠的物联网","authors":"Stavros Nousias, A. Lalos, A. Kalogeras, Christos E. Alexakos, C. Koulamas, K. Moustakas","doi":"10.1109/sa47457.2019.8938029","DOIUrl":null,"url":null,"abstract":"The continuous expansion of the Internet of Things, with even more devices expected to connect in the following years, leads to a great increase in the amount of data required to be transmitted and stored, identifying the need for robust, reliable and energy efficient data flow in the context of an ever-growing network. This study presents a matrix completion based approach for big data and large matrices facilitating local smoothness constraints combined with active subspace computing. We demonstrate that the presented approaches exhibit lower reconstruction error with respect to relevant literature for the specific problem. We also examine the effect of matrix size on the reconstruction accuracy so as to investigate the suitability of the proposed approaches for big data.","PeriodicalId":383922,"journal":{"name":"2019 First International Conference on Societal Automation (SA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse modeling and optimization tools for energy efficient and reliable IoT\",\"authors\":\"Stavros Nousias, A. Lalos, A. Kalogeras, Christos E. Alexakos, C. Koulamas, K. Moustakas\",\"doi\":\"10.1109/sa47457.2019.8938029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous expansion of the Internet of Things, with even more devices expected to connect in the following years, leads to a great increase in the amount of data required to be transmitted and stored, identifying the need for robust, reliable and energy efficient data flow in the context of an ever-growing network. This study presents a matrix completion based approach for big data and large matrices facilitating local smoothness constraints combined with active subspace computing. We demonstrate that the presented approaches exhibit lower reconstruction error with respect to relevant literature for the specific problem. We also examine the effect of matrix size on the reconstruction accuracy so as to investigate the suitability of the proposed approaches for big data.\",\"PeriodicalId\":383922,\"journal\":{\"name\":\"2019 First International Conference on Societal Automation (SA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 First International Conference on Societal Automation (SA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sa47457.2019.8938029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference on Societal Automation (SA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sa47457.2019.8938029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

物联网的不断扩展,预计将在未来几年内连接更多的设备,导致所需传输和存储的数据量大幅增加,在不断增长的网络背景下确定了对强大,可靠和节能的数据流的需求。本研究提出了一种基于矩阵补全的大数据和大矩阵的方法,结合主动子空间计算促进局部平滑约束。我们证明,所提出的方法表现出较低的重建误差相对于相关文献的具体问题。我们还研究了矩阵大小对重建精度的影响,以研究所提出的方法对大数据的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse modeling and optimization tools for energy efficient and reliable IoT
The continuous expansion of the Internet of Things, with even more devices expected to connect in the following years, leads to a great increase in the amount of data required to be transmitted and stored, identifying the need for robust, reliable and energy efficient data flow in the context of an ever-growing network. This study presents a matrix completion based approach for big data and large matrices facilitating local smoothness constraints combined with active subspace computing. We demonstrate that the presented approaches exhibit lower reconstruction error with respect to relevant literature for the specific problem. We also examine the effect of matrix size on the reconstruction accuracy so as to investigate the suitability of the proposed approaches for big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信