{"title":"全球博弈信息结构下的交替报价议价","authors":"A. Tsoy","doi":"10.2139/ssrn.2419314","DOIUrl":null,"url":null,"abstract":"In this study, I examine the alternating-offer bilateral bargaining model with private correlated values. The correlation of values is modeled via the global games information structure. I focus on the double limits of perfect Bayesian equilibria as offers become frequent and the correlation approaches perfect. I characterize the Pareto frontier of the double limits and show that it is efficient, but the surplus split generally differs from the Nash Bargaining split. I then construct a double limit that approximates the Nash Bargaining split in the ex-post surplus, but with a delay. Further, I prove the Folk theorem when the range of the buyer's values coincides with the range of the seller's costs: any feasible and individually rational ex-ante payoff profile can be approximated by a double limit.","PeriodicalId":420730,"journal":{"name":"ERN: Bargaining Theory (Topic)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Alternating-Offer Bargaining with the Global Games Information Structure\",\"authors\":\"A. Tsoy\",\"doi\":\"10.2139/ssrn.2419314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, I examine the alternating-offer bilateral bargaining model with private correlated values. The correlation of values is modeled via the global games information structure. I focus on the double limits of perfect Bayesian equilibria as offers become frequent and the correlation approaches perfect. I characterize the Pareto frontier of the double limits and show that it is efficient, but the surplus split generally differs from the Nash Bargaining split. I then construct a double limit that approximates the Nash Bargaining split in the ex-post surplus, but with a delay. Further, I prove the Folk theorem when the range of the buyer's values coincides with the range of the seller's costs: any feasible and individually rational ex-ante payoff profile can be approximated by a double limit.\",\"PeriodicalId\":420730,\"journal\":{\"name\":\"ERN: Bargaining Theory (Topic)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Bargaining Theory (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2419314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Bargaining Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2419314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alternating-Offer Bargaining with the Global Games Information Structure
In this study, I examine the alternating-offer bilateral bargaining model with private correlated values. The correlation of values is modeled via the global games information structure. I focus on the double limits of perfect Bayesian equilibria as offers become frequent and the correlation approaches perfect. I characterize the Pareto frontier of the double limits and show that it is efficient, but the surplus split generally differs from the Nash Bargaining split. I then construct a double limit that approximates the Nash Bargaining split in the ex-post surplus, but with a delay. Further, I prove the Folk theorem when the range of the buyer's values coincides with the range of the seller's costs: any feasible and individually rational ex-ante payoff profile can be approximated by a double limit.