基于种群的增量学习在基因调控网络逆向工程中的应用

Leon F Palafox, H. Iba
{"title":"基于种群的增量学习在基因调控网络逆向工程中的应用","authors":"Leon F Palafox, H. Iba","doi":"10.1109/CEC.2012.6256580","DOIUrl":null,"url":null,"abstract":"Gene Regulatory Networks (GRNs) describe the interactions between different genes. One of the most important tasks in biology is to find the right regulations in a GRN given observed data. The problem, is that the data is often noisy and scarce, and we have to use models robust to noise and scalable to hundreds of genes. Recently, Recursive Neural Networks (RNNs) have been presented as a viable model for GRNs, which is robust to noise and can be scaled to larger networks. In this paper, to optimize the parameters of the RNN, we implement a classic Population Based Incremental Learning (PBIL), which in certain scenarios has outperformed classic GA and other evolutionary techniques like Particle Swarm Optimization (PSO). We test this implementation on a small and a large artificial networks. We further study the optimal tunning parameters and discuss the advantages of the method.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the use of Population Based Incremental Learning to do Reverse Engineering on Gene Regulatory Networks\",\"authors\":\"Leon F Palafox, H. Iba\",\"doi\":\"10.1109/CEC.2012.6256580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene Regulatory Networks (GRNs) describe the interactions between different genes. One of the most important tasks in biology is to find the right regulations in a GRN given observed data. The problem, is that the data is often noisy and scarce, and we have to use models robust to noise and scalable to hundreds of genes. Recently, Recursive Neural Networks (RNNs) have been presented as a viable model for GRNs, which is robust to noise and can be scaled to larger networks. In this paper, to optimize the parameters of the RNN, we implement a classic Population Based Incremental Learning (PBIL), which in certain scenarios has outperformed classic GA and other evolutionary techniques like Particle Swarm Optimization (PSO). We test this implementation on a small and a large artificial networks. We further study the optimal tunning parameters and discuss the advantages of the method.\",\"PeriodicalId\":376837,\"journal\":{\"name\":\"2012 IEEE Congress on Evolutionary Computation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2012.6256580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基因调控网络(grn)描述了不同基因之间的相互作用。生物学中最重要的任务之一是在给定观测数据的情况下找到GRN的正确规律。问题是,数据通常是嘈杂的和稀缺的,我们必须使用对噪音具有鲁棒性的模型,并可扩展到数百个基因。近年来,递归神经网络(RNNs)作为一种可行的GRNs模型被提出,它对噪声具有鲁棒性,并且可以扩展到更大的网络。在本文中,为了优化RNN的参数,我们实现了一种经典的基于种群的增量学习(PBIL),它在某些情况下优于经典的遗传算法和其他进化技术,如粒子群优化(PSO)。我们在小型和大型人工网络上测试了该实现。进一步研究了最优调谐参数,并讨论了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of Population Based Incremental Learning to do Reverse Engineering on Gene Regulatory Networks
Gene Regulatory Networks (GRNs) describe the interactions between different genes. One of the most important tasks in biology is to find the right regulations in a GRN given observed data. The problem, is that the data is often noisy and scarce, and we have to use models robust to noise and scalable to hundreds of genes. Recently, Recursive Neural Networks (RNNs) have been presented as a viable model for GRNs, which is robust to noise and can be scaled to larger networks. In this paper, to optimize the parameters of the RNN, we implement a classic Population Based Incremental Learning (PBIL), which in certain scenarios has outperformed classic GA and other evolutionary techniques like Particle Swarm Optimization (PSO). We test this implementation on a small and a large artificial networks. We further study the optimal tunning parameters and discuss the advantages of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信