一种针对夜间杂乱背景的改进行人检测方法

Bin Zhang, Qiming Tian, Yupin Luo
{"title":"一种针对夜间杂乱背景的改进行人检测方法","authors":"Bin Zhang, Qiming Tian, Yupin Luo","doi":"10.1109/ICVES.2005.1563631","DOIUrl":null,"url":null,"abstract":"Pedestrian detection is one of the most interesting topics in driver assistant systems. In a normal two-step detection framework: image segmentation (thresholding) and recognition, the pedestrian areas usually connect with other objects after segmentation, especially in cluttered nighttime images. The bad segmentation result causes the recognition module not to identify the pedestrians. This paper presents a fast template matching approach to locate the most pedestrian-like areas (candidates) in the complex background. At most of the time, the template matching method produces too many non-human candidates. However, our approach employs a set of efficient and simple filters to reject most of unwished candidates to reduce false alarm rate. Experiments show that the proposed method can segment the pedestrian areas well and promote the ability of the pedestrian detection system.","PeriodicalId":443433,"journal":{"name":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved pedestrian detection approach for cluttered background in nighttime\",\"authors\":\"Bin Zhang, Qiming Tian, Yupin Luo\",\"doi\":\"10.1109/ICVES.2005.1563631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection is one of the most interesting topics in driver assistant systems. In a normal two-step detection framework: image segmentation (thresholding) and recognition, the pedestrian areas usually connect with other objects after segmentation, especially in cluttered nighttime images. The bad segmentation result causes the recognition module not to identify the pedestrians. This paper presents a fast template matching approach to locate the most pedestrian-like areas (candidates) in the complex background. At most of the time, the template matching method produces too many non-human candidates. However, our approach employs a set of efficient and simple filters to reject most of unwished candidates to reduce false alarm rate. Experiments show that the proposed method can segment the pedestrian areas well and promote the ability of the pedestrian detection system.\",\"PeriodicalId\":443433,\"journal\":{\"name\":\"IEEE International Conference on Vehicular Electronics and Safety, 2005.\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Vehicular Electronics and Safety, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2005.1563631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2005.1563631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

行人检测是驾驶辅助系统研究的热点之一。在通常的图像分割(阈值分割)和识别两步检测框架中,行人区域通常在分割后与其他物体相连,特别是在杂乱的夜间图像中。由于分割结果不好,导致识别模块无法识别行人。本文提出了一种快速模板匹配方法来定位复杂背景下最像行人的区域(候选区域)。在大多数情况下,模板匹配方法会产生太多的非人类候选对象。然而,我们的方法采用了一套高效和简单的过滤器来拒绝大多数不希望的候选,以降低误报率。实验表明,该方法能较好地分割行人区域,提高了行人检测系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved pedestrian detection approach for cluttered background in nighttime
Pedestrian detection is one of the most interesting topics in driver assistant systems. In a normal two-step detection framework: image segmentation (thresholding) and recognition, the pedestrian areas usually connect with other objects after segmentation, especially in cluttered nighttime images. The bad segmentation result causes the recognition module not to identify the pedestrians. This paper presents a fast template matching approach to locate the most pedestrian-like areas (candidates) in the complex background. At most of the time, the template matching method produces too many non-human candidates. However, our approach employs a set of efficient and simple filters to reject most of unwished candidates to reduce false alarm rate. Experiments show that the proposed method can segment the pedestrian areas well and promote the ability of the pedestrian detection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信