计算q-完整序列的第n项

A. Bostan
{"title":"计算q-完整序列的第n项","authors":"A. Bostan","doi":"10.1145/3373207.3404060","DOIUrl":null,"url":null,"abstract":"In 1977, Strassen invented a famous baby-step / giant-step algorithm that computes the factorial N! in arithmetic complexity quasi-linear in [EQUATION]. In 1988, the Chudnovsky brothers generalized Strassen's algorithm to the computation of the N-th term of any holonomic sequence in the same arithmetic complexity. We design q-analogues of these algorithms. We first extend Strassen's algorithm to the computation of the q-factorial of N, then Chudnovskys' algorithm to the computation of the N-th term of any q-holonomic sequence. Both algorithms work in arithmetic complexity quasi-linear in [EQUATION]. We describe various algorithmic consequences, including the acceleration of polynomial and rational solving of linear q-differential equations, and the fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and Schost.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computing the N-th term of a q-holonomic sequence\",\"authors\":\"A. Bostan\",\"doi\":\"10.1145/3373207.3404060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1977, Strassen invented a famous baby-step / giant-step algorithm that computes the factorial N! in arithmetic complexity quasi-linear in [EQUATION]. In 1988, the Chudnovsky brothers generalized Strassen's algorithm to the computation of the N-th term of any holonomic sequence in the same arithmetic complexity. We design q-analogues of these algorithms. We first extend Strassen's algorithm to the computation of the q-factorial of N, then Chudnovskys' algorithm to the computation of the N-th term of any q-holonomic sequence. Both algorithms work in arithmetic complexity quasi-linear in [EQUATION]. We describe various algorithmic consequences, including the acceleration of polynomial and rational solving of linear q-differential equations, and the fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and Schost.\",\"PeriodicalId\":186699,\"journal\":{\"name\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373207.3404060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

1977年,Strassen发明了一个著名的婴儿步/巨人步算法来计算N的阶乘!在[方程]中的算术复杂度拟线性。1988年,Chudnovsky兄弟将Strassen算法推广到在相同算术复杂度下计算任意完整序列的第n项。我们设计了这些算法的q-类似物。我们首先将Strassen算法推广到计算q的阶乘N,然后将Chudnovskys算法推广到计算任意q完整序列的第N项。在[方程]中,这两种算法的算术复杂度都是准线性的。我们描述了各种算法的结果,包括多项式的加速和线性q微分方程的有理解,以及大类多项式的快速求值,包括Nogneng和Schost最近考虑的一类多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the N-th term of a q-holonomic sequence
In 1977, Strassen invented a famous baby-step / giant-step algorithm that computes the factorial N! in arithmetic complexity quasi-linear in [EQUATION]. In 1988, the Chudnovsky brothers generalized Strassen's algorithm to the computation of the N-th term of any holonomic sequence in the same arithmetic complexity. We design q-analogues of these algorithms. We first extend Strassen's algorithm to the computation of the q-factorial of N, then Chudnovskys' algorithm to the computation of the N-th term of any q-holonomic sequence. Both algorithms work in arithmetic complexity quasi-linear in [EQUATION]. We describe various algorithmic consequences, including the acceleration of polynomial and rational solving of linear q-differential equations, and the fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and Schost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信