使用确定性最大似然和部分输入信息的盲识别/均衡

F. Alberge, P. Duhamel, M. Nikolova
{"title":"使用确定性最大似然和部分输入信息的盲识别/均衡","authors":"F. Alberge, P. Duhamel, M. Nikolova","doi":"10.1109/SPAWC.1999.783068","DOIUrl":null,"url":null,"abstract":"A new algorithm for jointly estimating the channels and the symbols sent through these channels is presented. Although the symbols are assumed to belong to a finite set, we use this prior information only partially. The rationale is that under some precise circumstances the plain deterministic maximum likelihood method seldom, if ever, exhibits local minima, while a full use of the finite alphabet property is more efficient, but introduces numerous local minima. The use of a partial information allows to considerably improve the performance in terms of symbol estimation without adding a new local minimum. Our algorithm combines a least-squares estimation of the channels and a constrained minimisation of a quadratic criterion for the symbols. If the data are noise-free, it is shown that the global minimum is attained only for the true filter and symbols. Furthermore, me propose a growing window technique which permits to evaluate whether the actual solution is a global minimum or not. In the second case, our technique permits to escape from this local minimum. Numerical simulations illustrate the accuracy of our algorithm in the presence of noise.","PeriodicalId":365086,"journal":{"name":"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Blind identification/equalization using deterministic maximum likelihood and a partial information on the input\",\"authors\":\"F. Alberge, P. Duhamel, M. Nikolova\",\"doi\":\"10.1109/SPAWC.1999.783068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm for jointly estimating the channels and the symbols sent through these channels is presented. Although the symbols are assumed to belong to a finite set, we use this prior information only partially. The rationale is that under some precise circumstances the plain deterministic maximum likelihood method seldom, if ever, exhibits local minima, while a full use of the finite alphabet property is more efficient, but introduces numerous local minima. The use of a partial information allows to considerably improve the performance in terms of symbol estimation without adding a new local minimum. Our algorithm combines a least-squares estimation of the channels and a constrained minimisation of a quadratic criterion for the symbols. If the data are noise-free, it is shown that the global minimum is attained only for the true filter and symbols. Furthermore, me propose a growing window technique which permits to evaluate whether the actual solution is a global minimum or not. In the second case, our technique permits to escape from this local minimum. Numerical simulations illustrate the accuracy of our algorithm in the presence of noise.\",\"PeriodicalId\":365086,\"journal\":{\"name\":\"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.1999.783068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.1999.783068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种联合估计信道和通过信道发送的符号的新算法。虽然假设符号属于有限集合,但我们只是部分地使用了这些先验信息。其基本原理是,在某些精确的情况下,简单的确定性极大似然方法很少(如果有的话)显示出局部最小值,而充分利用有限字母性质更有效,但会引入许多局部最小值。使用部分信息可以在不添加新的局部最小值的情况下显著提高符号估计的性能。我们的算法结合了信道的最小二乘估计和符号的二次准则的约束最小化。如果数据是无噪声的,则表明只有对真正的滤波器和符号才能达到全局最小值。此外,我提出了一种增长窗口技术,该技术允许评估实际解是否是全局最小值。在第二种情况下,我们的技术允许脱离这个局部最小值。数值模拟表明了该算法在噪声存在下的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind identification/equalization using deterministic maximum likelihood and a partial information on the input
A new algorithm for jointly estimating the channels and the symbols sent through these channels is presented. Although the symbols are assumed to belong to a finite set, we use this prior information only partially. The rationale is that under some precise circumstances the plain deterministic maximum likelihood method seldom, if ever, exhibits local minima, while a full use of the finite alphabet property is more efficient, but introduces numerous local minima. The use of a partial information allows to considerably improve the performance in terms of symbol estimation without adding a new local minimum. Our algorithm combines a least-squares estimation of the channels and a constrained minimisation of a quadratic criterion for the symbols. If the data are noise-free, it is shown that the global minimum is attained only for the true filter and symbols. Furthermore, me propose a growing window technique which permits to evaluate whether the actual solution is a global minimum or not. In the second case, our technique permits to escape from this local minimum. Numerical simulations illustrate the accuracy of our algorithm in the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信