从盖尔曼1960年的三维结构到所有基本粒子数据的希格斯场结构

H. J. Scheuber
{"title":"从盖尔曼1960年的三维结构到所有基本粒子数据的希格斯场结构","authors":"H. J. Scheuber","doi":"10.24018/ejphysics.2021.3.4.92","DOIUrl":null,"url":null,"abstract":"In 1960 Gell-Mann completed the “Particle Zoo” with pseudo 3D constructions: a Spin-Strangeness plane and an oblique incident charge. In this way he investigated with the crossing Kaon connections (1/2 Spin, -1, 0, 1 Strangeness, -1, 0, 1 Charge) 3 quark-points with simple proper fractions. With the new media the construction can be better detected with a perpendicular charge axis as could be done with the GeoGebra 5 program. But 1960 the Quantum Mechanics didn’t want the Strangeness and prevented a construction for everyman. Only experts were mathematically according to Lagrange allowed to get an idea about the real matter. But according to the Euclid Geometry 3 points lay on a circle line; if twice, then with 6 exact Quark points all other known requirements of the particle physics can be done by construction.","PeriodicalId":292629,"journal":{"name":"European Journal of Applied Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From the 3D Constructions of Gell-Mann’s 1960 to the Higgs Field Constructions with Data of all Elementary Particles\",\"authors\":\"H. J. Scheuber\",\"doi\":\"10.24018/ejphysics.2021.3.4.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1960 Gell-Mann completed the “Particle Zoo” with pseudo 3D constructions: a Spin-Strangeness plane and an oblique incident charge. In this way he investigated with the crossing Kaon connections (1/2 Spin, -1, 0, 1 Strangeness, -1, 0, 1 Charge) 3 quark-points with simple proper fractions. With the new media the construction can be better detected with a perpendicular charge axis as could be done with the GeoGebra 5 program. But 1960 the Quantum Mechanics didn’t want the Strangeness and prevented a construction for everyman. Only experts were mathematically according to Lagrange allowed to get an idea about the real matter. But according to the Euclid Geometry 3 points lay on a circle line; if twice, then with 6 exact Quark points all other known requirements of the particle physics can be done by construction.\",\"PeriodicalId\":292629,\"journal\":{\"name\":\"European Journal of Applied Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2021.3.4.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2021.3.4.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1960年,盖尔曼用伪三维结构完成了“粒子动物园”:一个自旋奇异面和一个斜入射电荷。用这种方法,他研究了具有简单固有分数的3个夸克点的交叉介子连接(1/2自旋,- 1,0,1奇异度,- 1,0,1电荷)。与GeoGebra 5程序一样,使用新介质可以用垂直电荷轴更好地检测结构。但是1960年,量子力学不想要奇异性,并阻止了对普通人的构建。只有在数学上遵循拉格朗日理论的专家才能对真实的事物有所了解。但根据欧几里得几何,三个点位于一条圆线上;如果两次,那么有6个精确的夸克点,所有其他已知的粒子物理要求都可以通过构建来完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From the 3D Constructions of Gell-Mann’s 1960 to the Higgs Field Constructions with Data of all Elementary Particles
In 1960 Gell-Mann completed the “Particle Zoo” with pseudo 3D constructions: a Spin-Strangeness plane and an oblique incident charge. In this way he investigated with the crossing Kaon connections (1/2 Spin, -1, 0, 1 Strangeness, -1, 0, 1 Charge) 3 quark-points with simple proper fractions. With the new media the construction can be better detected with a perpendicular charge axis as could be done with the GeoGebra 5 program. But 1960 the Quantum Mechanics didn’t want the Strangeness and prevented a construction for everyman. Only experts were mathematically according to Lagrange allowed to get an idea about the real matter. But according to the Euclid Geometry 3 points lay on a circle line; if twice, then with 6 exact Quark points all other known requirements of the particle physics can be done by construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信