电磁学最小作用原理回顾:第二部分:麦克斯韦方程组的推导

D. Poljak
{"title":"电磁学最小作用原理回顾:第二部分:麦克斯韦方程组的推导","authors":"D. Poljak","doi":"10.23919/softcom55329.2022.9911284","DOIUrl":null,"url":null,"abstract":"The 2nd paper in three-part study deals with a derivation of Maxwell's equations by using Hamilton's principle in electromagnetics and Noether's theorem for fields. Kinematical Maxwell's equations are derived from gauge symmetry, while two dynamical Maxwell's equations are derived by minimizing the functional of electromagnetic energy. The corresponding Lagrangian is given as difference between energy stored in the magnetic and electric field respectively.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Review of Least Action Principle in Electromagnetics: Part II: Derivation of Maxwell's Equations\",\"authors\":\"D. Poljak\",\"doi\":\"10.23919/softcom55329.2022.9911284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2nd paper in three-part study deals with a derivation of Maxwell's equations by using Hamilton's principle in electromagnetics and Noether's theorem for fields. Kinematical Maxwell's equations are derived from gauge symmetry, while two dynamical Maxwell's equations are derived by minimizing the functional of electromagnetic energy. The corresponding Lagrangian is given as difference between energy stored in the magnetic and electric field respectively.\",\"PeriodicalId\":261625,\"journal\":{\"name\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/softcom55329.2022.9911284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的第二部分是利用电磁学中的汉密尔顿原理和场中的诺特定理推导麦克斯韦方程组。运动学麦克斯韦方程组由规范对称导出,动力学麦克斯韦方程组由最小化电磁能泛函导出。相应的拉格朗日量分别以磁场和电场中存储的能量之差给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Least Action Principle in Electromagnetics: Part II: Derivation of Maxwell's Equations
The 2nd paper in three-part study deals with a derivation of Maxwell's equations by using Hamilton's principle in electromagnetics and Noether's theorem for fields. Kinematical Maxwell's equations are derived from gauge symmetry, while two dynamical Maxwell's equations are derived by minimizing the functional of electromagnetic energy. The corresponding Lagrangian is given as difference between energy stored in the magnetic and electric field respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信