光伏电站网络物理安全框架

Jinan Zhang, Qi Li, Jin Ye, Lulu Guo
{"title":"光伏电站网络物理安全框架","authors":"Jinan Zhang, Qi Li, Jin Ye, Lulu Guo","doi":"10.1109/CyberPELS49534.2020.9311533","DOIUrl":null,"url":null,"abstract":"With the evolution of PV converters, a growing number of vulnerabilities in PV farms are exposing to cyber threats. To mitigate the influence of cyber-attack on PV farms, it is necessary to study attacks’ impact and propose detection methods. To meet this requirement, a cyber-physical security framework is proposed for PV farms. Data integrity attacks (DIAs) are studied on different control loops. As μPMU is gaining in popularity, a lower sampling rate of μPMU data is applied to develop a detection algorithm. We have evaluated two data-driven methods, which are support vector machine (SVM) and long short-term memory (LSTM). Finally, the data-driven methods verify the feasibility of μPMU data in attack detection.","PeriodicalId":434320,"journal":{"name":"2020 IEEE CyberPELS (CyberPELS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cyber-physical security framework for Photovoltaic Farms\",\"authors\":\"Jinan Zhang, Qi Li, Jin Ye, Lulu Guo\",\"doi\":\"10.1109/CyberPELS49534.2020.9311533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the evolution of PV converters, a growing number of vulnerabilities in PV farms are exposing to cyber threats. To mitigate the influence of cyber-attack on PV farms, it is necessary to study attacks’ impact and propose detection methods. To meet this requirement, a cyber-physical security framework is proposed for PV farms. Data integrity attacks (DIAs) are studied on different control loops. As μPMU is gaining in popularity, a lower sampling rate of μPMU data is applied to develop a detection algorithm. We have evaluated two data-driven methods, which are support vector machine (SVM) and long short-term memory (LSTM). Finally, the data-driven methods verify the feasibility of μPMU data in attack detection.\",\"PeriodicalId\":434320,\"journal\":{\"name\":\"2020 IEEE CyberPELS (CyberPELS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE CyberPELS (CyberPELS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberPELS49534.2020.9311533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE CyberPELS (CyberPELS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberPELS49534.2020.9311533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着光伏变流器的发展,越来越多的光伏电站的漏洞暴露在网络威胁之下。为了减轻网络攻击对光伏电站的影响,有必要研究攻击的影响并提出检测方法。为了满足这一要求,提出了一个针对光伏发电场的网络物理安全框架。研究了不同控制回路下的数据完整性攻击。随着μPMU的普及,采用较低采样率的μPMU数据来开发检测算法。我们评估了两种数据驱动的方法,即支持向量机(SVM)和长短期记忆(LSTM)。最后,通过数据驱动方法验证了μPMU数据在攻击检测中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyber-physical security framework for Photovoltaic Farms
With the evolution of PV converters, a growing number of vulnerabilities in PV farms are exposing to cyber threats. To mitigate the influence of cyber-attack on PV farms, it is necessary to study attacks’ impact and propose detection methods. To meet this requirement, a cyber-physical security framework is proposed for PV farms. Data integrity attacks (DIAs) are studied on different control loops. As μPMU is gaining in popularity, a lower sampling rate of μPMU data is applied to develop a detection algorithm. We have evaluated two data-driven methods, which are support vector machine (SVM) and long short-term memory (LSTM). Finally, the data-driven methods verify the feasibility of μPMU data in attack detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信