双壳类软体动物生活区信号浮标结构分析

Alexandra Gabriela Ene, C. Mihai, M. Jomir, Constantin Jomir
{"title":"双壳类软体动物生活区信号浮标结构分析","authors":"Alexandra Gabriela Ene, C. Mihai, M. Jomir, Constantin Jomir","doi":"10.54941/ahfe1003646","DOIUrl":null,"url":null,"abstract":"The diseases caused by the Norwalk virus (norovirus, Caliciviridae family), which produces gastroenteritis, and HAV (hepatitis A virus), and consequently generates infectious hepatitis, are the most common infections associated with the consumption of contaminated bivalve mollusks, raw or under-cooked. Moreover, the mutual commercial agreement between the EU and the USA regarding the export of live bivalve mollusks requires the adoption of a control program for the microbiological classification and monitoring of the production of this type of seafood, as well as the clear demarcation and signalling of the relaying areas. In this sense, in order to obtain the natural purification of live bivalve mollusks, the relaying areas, as freshwater, sea, estuaries or lagoons, must be demarcated and signaled with the help of buoys. The mathematical modeling of the geometric domain was performed with specialized software based on dimensional constraints specific to an algebraic surface of 2nd order – frusta of cones welded at large end, with different volumes for each frustum. The dimensions for the emerged/submerged frustum were: slant height: 630mm/800mm, radius of the larger circular front: 600mm/600mm and radius of the smaller circular front: 200mm/256mm. The Generative Structural Analysis module enabled the simulation of the behavior of the buoy both as a single entity and as a set of broken (individual) entities. The loads were carried out in the extreme conditions of the open sea, corresponding at: i) agitation state of 4 - 8 degrees Beaufort (wind speed 11 - 15 kt, respectively 20 - 88 km/h) and wave height of max. 1.5 m; ii) wind speed of 34 - 40 kt (62 - 74 km/h) and wave height of 6-7.5 m. Two types of constraints were considered both at the base and in the frusta joint area. Analysis of displacement fields and equivalent stresses (Von Mises) evidenced that the buoy is a rigid structure (with reduced maximum displacements, of 1.2e+003 mm, for 8bf), with an admissible resistance of emerged/submerged frustum 8.11e+ 009N_m2 /1.75e+009 N_m2 that enables the retrieve of the efforts due to the environment, as the possible cracks that might appear at the contact of the composite structure with the fluid in turbulent motion exceed the value of 7.83e+009N_m2 for the stress at 8bf. In addition, were considered for the emerged/submerged frustum: slant height: 630mm/800mm, radius of the larger circular front: 600mm/600mm and radius of the smaller circular front: 200mm/256mm. In this situation, a CAD/CAE environment enabled the simulation of the behavior of the buoy both as a single entity and as a set of broken (individual) entities was performed. Moreover, for the matrix made of 45%/55% PA6.6/PES fabric –corresponding to the emerged frustum and respectively 100% PA6.6 for the submerged frustum were used calculation algorithms specific to fabric design. The resulting variation intervals of the longitudinal, respectively transverse system, mass, width and connection were assessed. The buoy obtained based on mechanic-textile processing technologies will be subjected to experiments at the shore and in real conditions of use, in order to determine the corresponding technical resource.","PeriodicalId":448346,"journal":{"name":"Human Factors for Apparel and Textile Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Analysis Of The Signaling Buoy Used In Relaying Areas Of Live Bivalve Mollusks\",\"authors\":\"Alexandra Gabriela Ene, C. Mihai, M. Jomir, Constantin Jomir\",\"doi\":\"10.54941/ahfe1003646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diseases caused by the Norwalk virus (norovirus, Caliciviridae family), which produces gastroenteritis, and HAV (hepatitis A virus), and consequently generates infectious hepatitis, are the most common infections associated with the consumption of contaminated bivalve mollusks, raw or under-cooked. Moreover, the mutual commercial agreement between the EU and the USA regarding the export of live bivalve mollusks requires the adoption of a control program for the microbiological classification and monitoring of the production of this type of seafood, as well as the clear demarcation and signalling of the relaying areas. In this sense, in order to obtain the natural purification of live bivalve mollusks, the relaying areas, as freshwater, sea, estuaries or lagoons, must be demarcated and signaled with the help of buoys. The mathematical modeling of the geometric domain was performed with specialized software based on dimensional constraints specific to an algebraic surface of 2nd order – frusta of cones welded at large end, with different volumes for each frustum. The dimensions for the emerged/submerged frustum were: slant height: 630mm/800mm, radius of the larger circular front: 600mm/600mm and radius of the smaller circular front: 200mm/256mm. The Generative Structural Analysis module enabled the simulation of the behavior of the buoy both as a single entity and as a set of broken (individual) entities. The loads were carried out in the extreme conditions of the open sea, corresponding at: i) agitation state of 4 - 8 degrees Beaufort (wind speed 11 - 15 kt, respectively 20 - 88 km/h) and wave height of max. 1.5 m; ii) wind speed of 34 - 40 kt (62 - 74 km/h) and wave height of 6-7.5 m. Two types of constraints were considered both at the base and in the frusta joint area. Analysis of displacement fields and equivalent stresses (Von Mises) evidenced that the buoy is a rigid structure (with reduced maximum displacements, of 1.2e+003 mm, for 8bf), with an admissible resistance of emerged/submerged frustum 8.11e+ 009N_m2 /1.75e+009 N_m2 that enables the retrieve of the efforts due to the environment, as the possible cracks that might appear at the contact of the composite structure with the fluid in turbulent motion exceed the value of 7.83e+009N_m2 for the stress at 8bf. In addition, were considered for the emerged/submerged frustum: slant height: 630mm/800mm, radius of the larger circular front: 600mm/600mm and radius of the smaller circular front: 200mm/256mm. In this situation, a CAD/CAE environment enabled the simulation of the behavior of the buoy both as a single entity and as a set of broken (individual) entities was performed. Moreover, for the matrix made of 45%/55% PA6.6/PES fabric –corresponding to the emerged frustum and respectively 100% PA6.6 for the submerged frustum were used calculation algorithms specific to fabric design. The resulting variation intervals of the longitudinal, respectively transverse system, mass, width and connection were assessed. The buoy obtained based on mechanic-textile processing technologies will be subjected to experiments at the shore and in real conditions of use, in order to determine the corresponding technical resource.\",\"PeriodicalId\":448346,\"journal\":{\"name\":\"Human Factors for Apparel and Textile Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors for Apparel and Textile Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1003646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors for Apparel and Textile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1003646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

诺瓦克病毒(诺瓦克病毒,杯状病毒科)引起的疾病会引起胃肠炎和甲型肝炎病毒,并因此引起传染性肝炎,这是与食用受污染的双壳类软体动物(生的或未煮熟的)有关的最常见感染。此外,欧盟和美国之间关于活双壳类软体动物出口的相互商业协议要求采用一项控制计划,对这类海产品的生产进行微生物分类和监测,并明确划定转运区域和发出信号。从这个意义上说,为了获得活双壳类软体动物的自然净化,必须在淡水、海洋、河口或泻湖等中转区域进行划界,并在浮标的帮助下发出信号。基于大端焊接锥体的二阶锥体代数曲面的尺寸约束,利用专用软件对几何域进行数学建模,每个锥体具有不同的体积。出/沉台尺寸:倾斜高度:630mm/800mm,较大圆锋半径:600mm/600mm,较小圆锋半径:200mm/256mm。生成结构分析模块可以模拟浮标作为单个实体和一组破碎(个体)实体的行为。载荷是在远海的极端条件下进行的,对应于:1)波弗4 ~ 8度的搅拌状态(风速11 ~ 15 kt,分别为20 ~ 88 km/h)和最大浪高。1.5米;Ii)风速34 - 40节(62 - 74公里/小时),浪高6-7.5米。在基础和截关节区域分别考虑了两种类型的约束。位移场和等效应力分析(Von Mises)证明该浮标为刚性结构(最大位移减小,为1.2e+003 mm,为8bf),允许浮台/沉台阻力为8.11e+ 009N_m2 /1.75e+009 N_m2,能够收回因环境引起的努力。由于复合材料结构与湍流流体接触时可能产生的裂纹超过了8bf应力的7.83e+009N_m2值。此外,对出/沉锥台考虑:倾斜高度:630mm/800mm,较大圆锋半径:600mm/600mm,较小圆锋半径:200mm/256mm。在这种情况下,CAD/CAE环境可以模拟浮标作为一个单一实体和一组破碎(个体)实体的行为。此外,对于45%/55% PA6.6/PES织物构成的矩阵-对应出台体,100% PA6.6/PES织物构成的矩阵对应沉台体,分别采用了针对织物设计的计算算法。评估了纵向、横向系统、质量、宽度和连接的变化区间。利用机械纺织加工技术获得的浮标将在岸上和实际使用条件下进行试验,以确定相应的技术资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Analysis Of The Signaling Buoy Used In Relaying Areas Of Live Bivalve Mollusks
The diseases caused by the Norwalk virus (norovirus, Caliciviridae family), which produces gastroenteritis, and HAV (hepatitis A virus), and consequently generates infectious hepatitis, are the most common infections associated with the consumption of contaminated bivalve mollusks, raw or under-cooked. Moreover, the mutual commercial agreement between the EU and the USA regarding the export of live bivalve mollusks requires the adoption of a control program for the microbiological classification and monitoring of the production of this type of seafood, as well as the clear demarcation and signalling of the relaying areas. In this sense, in order to obtain the natural purification of live bivalve mollusks, the relaying areas, as freshwater, sea, estuaries or lagoons, must be demarcated and signaled with the help of buoys. The mathematical modeling of the geometric domain was performed with specialized software based on dimensional constraints specific to an algebraic surface of 2nd order – frusta of cones welded at large end, with different volumes for each frustum. The dimensions for the emerged/submerged frustum were: slant height: 630mm/800mm, radius of the larger circular front: 600mm/600mm and radius of the smaller circular front: 200mm/256mm. The Generative Structural Analysis module enabled the simulation of the behavior of the buoy both as a single entity and as a set of broken (individual) entities. The loads were carried out in the extreme conditions of the open sea, corresponding at: i) agitation state of 4 - 8 degrees Beaufort (wind speed 11 - 15 kt, respectively 20 - 88 km/h) and wave height of max. 1.5 m; ii) wind speed of 34 - 40 kt (62 - 74 km/h) and wave height of 6-7.5 m. Two types of constraints were considered both at the base and in the frusta joint area. Analysis of displacement fields and equivalent stresses (Von Mises) evidenced that the buoy is a rigid structure (with reduced maximum displacements, of 1.2e+003 mm, for 8bf), with an admissible resistance of emerged/submerged frustum 8.11e+ 009N_m2 /1.75e+009 N_m2 that enables the retrieve of the efforts due to the environment, as the possible cracks that might appear at the contact of the composite structure with the fluid in turbulent motion exceed the value of 7.83e+009N_m2 for the stress at 8bf. In addition, were considered for the emerged/submerged frustum: slant height: 630mm/800mm, radius of the larger circular front: 600mm/600mm and radius of the smaller circular front: 200mm/256mm. In this situation, a CAD/CAE environment enabled the simulation of the behavior of the buoy both as a single entity and as a set of broken (individual) entities was performed. Moreover, for the matrix made of 45%/55% PA6.6/PES fabric –corresponding to the emerged frustum and respectively 100% PA6.6 for the submerged frustum were used calculation algorithms specific to fabric design. The resulting variation intervals of the longitudinal, respectively transverse system, mass, width and connection were assessed. The buoy obtained based on mechanic-textile processing technologies will be subjected to experiments at the shore and in real conditions of use, in order to determine the corresponding technical resource.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信