利用空闲时间游戏板确定P-FRP的实际响应时间

Chaitanya Belwal, A. Cheng
{"title":"利用空闲时间游戏板确定P-FRP的实际响应时间","authors":"Chaitanya Belwal, A. Cheng","doi":"10.1109/ISORC.2011.26","DOIUrl":null,"url":null,"abstract":"A new, purely functional model of computation, called Priority-based Functional Reactive Programming (P-FRP), has been introduced as a new paradigm for building real-time software. P-FRP allows assignment of static priorities to tasks and guarantees that, when a higher priority task is released, the system will immediately preempt any lower-priority tasks that may be executing at the time. This execution model is different from the classical preemptive model of real-time systems due to the abort nature of preempted tasks. Methods developed for determining actual response time in the preemptive model are not guaranteed to work in P-FRP. In previous work, the gap-enumeration technique has been presented as a viable alternative to simulations for computing actual response time in P-FRP. Unfortunately, this method is difficult to implement due to its use of a Red-Black tree which is not available as a native function in programming languages. Also this method requires a complex logic loop for finding idle periods. In this paper, we present another technique using game-board which is simple to implement and uses native data structures. However, this simplicity comes at a performance cost which has also been analyzed in this paper.","PeriodicalId":431231,"journal":{"name":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Determining Actual Response Time in P-FRP Using Idle-Period Game Board\",\"authors\":\"Chaitanya Belwal, A. Cheng\",\"doi\":\"10.1109/ISORC.2011.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new, purely functional model of computation, called Priority-based Functional Reactive Programming (P-FRP), has been introduced as a new paradigm for building real-time software. P-FRP allows assignment of static priorities to tasks and guarantees that, when a higher priority task is released, the system will immediately preempt any lower-priority tasks that may be executing at the time. This execution model is different from the classical preemptive model of real-time systems due to the abort nature of preempted tasks. Methods developed for determining actual response time in the preemptive model are not guaranteed to work in P-FRP. In previous work, the gap-enumeration technique has been presented as a viable alternative to simulations for computing actual response time in P-FRP. Unfortunately, this method is difficult to implement due to its use of a Red-Black tree which is not available as a native function in programming languages. Also this method requires a complex logic loop for finding idle periods. In this paper, we present another technique using game-board which is simple to implement and uses native data structures. However, this simplicity comes at a performance cost which has also been analyzed in this paper.\",\"PeriodicalId\":431231,\"journal\":{\"name\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2011.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2011.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

一种新的纯功能计算模型,称为基于优先级的功能反应性编程(P-FRP),已经被引入作为构建实时软件的新范例。P-FRP允许为任务分配静态优先级,并保证当高优先级任务被释放时,系统将立即抢占任何可能正在执行的低优先级任务。由于被抢占任务的中止性质,该执行模型不同于实时系统的经典抢占模型。在抢占模型中确定实际响应时间的方法不能保证在P-FRP中工作。在以前的工作中,间隙枚举技术已被提出作为计算P-FRP实际响应时间模拟的可行替代方案。不幸的是,这种方法很难实现,因为它使用了红黑树,而红黑树在编程语言中是不可用的本地函数。此外,这种方法需要一个复杂的逻辑循环来查找空闲时间。在本文中,我们提出了另一种使用游戏板的技术,该技术易于实现并使用本地数据结构。然而,这种简单是以性能为代价的,本文也对此进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining Actual Response Time in P-FRP Using Idle-Period Game Board
A new, purely functional model of computation, called Priority-based Functional Reactive Programming (P-FRP), has been introduced as a new paradigm for building real-time software. P-FRP allows assignment of static priorities to tasks and guarantees that, when a higher priority task is released, the system will immediately preempt any lower-priority tasks that may be executing at the time. This execution model is different from the classical preemptive model of real-time systems due to the abort nature of preempted tasks. Methods developed for determining actual response time in the preemptive model are not guaranteed to work in P-FRP. In previous work, the gap-enumeration technique has been presented as a viable alternative to simulations for computing actual response time in P-FRP. Unfortunately, this method is difficult to implement due to its use of a Red-Black tree which is not available as a native function in programming languages. Also this method requires a complex logic loop for finding idle periods. In this paper, we present another technique using game-board which is simple to implement and uses native data structures. However, this simplicity comes at a performance cost which has also been analyzed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信