{"title":"基于Nikhilam经的吠陀二进制乘法器的FPGA优化硬件实现","authors":"Pal Yash, M. Thakare, Babita Jajodia","doi":"10.1109/LASCAS53948.2022.9789063","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient and optimized method of binary multiplication based on Nikhilam Sutra (algo-rithm) of Ancient Vedic Mathematics feasible for practical and real-time hardware implementations. This work demonstrates hardware implementation results of varying input bit-lengths (4-bit, 8-bit, 16-bit, 32-bit, and 64-bit) on Field Programmable Gate Array (FPGA) platform with an advantage of the reduced combinational delay and low device utilization (no. of slice LUTs) over existing alternative multiplication units and state-of-the-art Urdhva Tiriyakbhyam and Nikhilam Sutra-based multiplication architectures. The proposed binary multiplier architecture is also demonstrated on the Virtex-7 (xc7vx485t-3ffg1157) FPGA device. Hardware implementation results on Xilinx Virtex-7 FPGA device for 8 × 8 proposed multiplication unit show that the design consumes 24 slice LUTs and maximum frequency up to 257.1 MHz.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Hardware Implementation of Vedic Binary Multiplier using Nikhilam Sutra on FPGA\",\"authors\":\"Pal Yash, M. Thakare, Babita Jajodia\",\"doi\":\"10.1109/LASCAS53948.2022.9789063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient and optimized method of binary multiplication based on Nikhilam Sutra (algo-rithm) of Ancient Vedic Mathematics feasible for practical and real-time hardware implementations. This work demonstrates hardware implementation results of varying input bit-lengths (4-bit, 8-bit, 16-bit, 32-bit, and 64-bit) on Field Programmable Gate Array (FPGA) platform with an advantage of the reduced combinational delay and low device utilization (no. of slice LUTs) over existing alternative multiplication units and state-of-the-art Urdhva Tiriyakbhyam and Nikhilam Sutra-based multiplication architectures. The proposed binary multiplier architecture is also demonstrated on the Virtex-7 (xc7vx485t-3ffg1157) FPGA device. Hardware implementation results on Xilinx Virtex-7 FPGA device for 8 × 8 proposed multiplication unit show that the design consumes 24 slice LUTs and maximum frequency up to 257.1 MHz.\",\"PeriodicalId\":356481,\"journal\":{\"name\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS53948.2022.9789063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized Hardware Implementation of Vedic Binary Multiplier using Nikhilam Sutra on FPGA
This paper proposes an efficient and optimized method of binary multiplication based on Nikhilam Sutra (algo-rithm) of Ancient Vedic Mathematics feasible for practical and real-time hardware implementations. This work demonstrates hardware implementation results of varying input bit-lengths (4-bit, 8-bit, 16-bit, 32-bit, and 64-bit) on Field Programmable Gate Array (FPGA) platform with an advantage of the reduced combinational delay and low device utilization (no. of slice LUTs) over existing alternative multiplication units and state-of-the-art Urdhva Tiriyakbhyam and Nikhilam Sutra-based multiplication architectures. The proposed binary multiplier architecture is also demonstrated on the Virtex-7 (xc7vx485t-3ffg1157) FPGA device. Hardware implementation results on Xilinx Virtex-7 FPGA device for 8 × 8 proposed multiplication unit show that the design consumes 24 slice LUTs and maximum frequency up to 257.1 MHz.