粘接接头中接吻键的研究

M. Kornely, Julian Ehrler, J. Philipp, E. Stammen, K. Dilger, M. Kreutzbruck
{"title":"粘接接头中接吻键的研究","authors":"M. Kornely, Julian Ehrler, J. Philipp, E. Stammen, K. Dilger, M. Kreutzbruck","doi":"10.58286/28226","DOIUrl":null,"url":null,"abstract":"\nKissing bonds are critical defects in adhesively bonded parts. These defects result in a weak bonding in the interface region between the adherent and the adhesive. Unlike delaminations, kissing bonds induce a delicate change in contact properties. Thus, conventional non-destructive testing methods are not able to detect kissing bonds reliably. In this work various non-destructive testing techniques on kissing bonds were investigated. The manufactured kissing bond containing specimens were investigated with different non-destructive testing methods such as conventional ultrasound, aircoupled ultrasound, x-ray and shearography. Unfortunately, those non-destructive testing methods weren’t able to detect the kissing bonds dependably. On the contrary, the application of nonlinear ultrasound demonstrated the most reliable results in detecting kissing bonds. With this testing setup, the specimens were excited with a piezo shaker in a continuous wave mode and the vibration on the surface of the specimen was detected by laser Doppler vibrometry. After fast Fourier transform (FFT), a dramatic increase in the higher harmonic amplitudes were detected in an area with lower bonding force. The low adhesive forces lead to a higher nonlinearity of the kissing bond area, what results in substantial rise of the higher harmonic amplitudes. The measurements on the kissing bonds with their reduced adhesive force show a substantial rise of higher harmonic amplitudes, which makes it a suitable method for the detection of kissing bonds.\n","PeriodicalId":383798,"journal":{"name":"Research and Review Journal of Nondestructive Testing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Kissing Bonds in Adhesive Joints\",\"authors\":\"M. Kornely, Julian Ehrler, J. Philipp, E. Stammen, K. Dilger, M. Kreutzbruck\",\"doi\":\"10.58286/28226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nKissing bonds are critical defects in adhesively bonded parts. These defects result in a weak bonding in the interface region between the adherent and the adhesive. Unlike delaminations, kissing bonds induce a delicate change in contact properties. Thus, conventional non-destructive testing methods are not able to detect kissing bonds reliably. In this work various non-destructive testing techniques on kissing bonds were investigated. The manufactured kissing bond containing specimens were investigated with different non-destructive testing methods such as conventional ultrasound, aircoupled ultrasound, x-ray and shearography. Unfortunately, those non-destructive testing methods weren’t able to detect the kissing bonds dependably. On the contrary, the application of nonlinear ultrasound demonstrated the most reliable results in detecting kissing bonds. With this testing setup, the specimens were excited with a piezo shaker in a continuous wave mode and the vibration on the surface of the specimen was detected by laser Doppler vibrometry. After fast Fourier transform (FFT), a dramatic increase in the higher harmonic amplitudes were detected in an area with lower bonding force. The low adhesive forces lead to a higher nonlinearity of the kissing bond area, what results in substantial rise of the higher harmonic amplitudes. The measurements on the kissing bonds with their reduced adhesive force show a substantial rise of higher harmonic amplitudes, which makes it a suitable method for the detection of kissing bonds.\\n\",\"PeriodicalId\":383798,\"journal\":{\"name\":\"Research and Review Journal of Nondestructive Testing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research and Review Journal of Nondestructive Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58286/28226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Review Journal of Nondestructive Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58286/28226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

接吻键是粘接零件的关键缺陷。这些缺陷导致粘着剂和粘着剂之间的界面区域粘接较弱。与分层不同,亲和键会引起接触特性的微妙变化。因此,传统的无损检测方法无法可靠地检测亲和键。本文研究了接吻键的各种无损检测技术。采用常规超声、空气耦合超声、x射线和剪切成像等不同的无损检测方法对制备的含亲和键试件进行了研究。不幸的是,这些非破坏性的检测方法无法可靠地检测到亲和键。相反,非线性超声的应用在检测接吻键方面显示出最可靠的结果。在该试验装置中,用压电激振器以连续波模式对试件进行激振,用激光多普勒振动仪检测试件表面的振动。在快速傅里叶变换(FFT)后,在结合力较低的区域检测到高谐波幅值的急剧增加。较低的附着力导致亲和键面积的非线性增大,从而导致高谐波幅值的大幅上升。对粘接力降低后的亲和键的测量结果表明,其高谐波幅值有明显的上升,这是一种适合于亲和键检测的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Kissing Bonds in Adhesive Joints
Kissing bonds are critical defects in adhesively bonded parts. These defects result in a weak bonding in the interface region between the adherent and the adhesive. Unlike delaminations, kissing bonds induce a delicate change in contact properties. Thus, conventional non-destructive testing methods are not able to detect kissing bonds reliably. In this work various non-destructive testing techniques on kissing bonds were investigated. The manufactured kissing bond containing specimens were investigated with different non-destructive testing methods such as conventional ultrasound, aircoupled ultrasound, x-ray and shearography. Unfortunately, those non-destructive testing methods weren’t able to detect the kissing bonds dependably. On the contrary, the application of nonlinear ultrasound demonstrated the most reliable results in detecting kissing bonds. With this testing setup, the specimens were excited with a piezo shaker in a continuous wave mode and the vibration on the surface of the specimen was detected by laser Doppler vibrometry. After fast Fourier transform (FFT), a dramatic increase in the higher harmonic amplitudes were detected in an area with lower bonding force. The low adhesive forces lead to a higher nonlinearity of the kissing bond area, what results in substantial rise of the higher harmonic amplitudes. The measurements on the kissing bonds with their reduced adhesive force show a substantial rise of higher harmonic amplitudes, which makes it a suitable method for the detection of kissing bonds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信