S. Mertens, J. D. del Alamo, T. Suemitsu, T. Enoki
{"title":"基于wsin栅极堆的InP hemt的氢敏感性","authors":"S. Mertens, J. D. del Alamo, T. Suemitsu, T. Enoki","doi":"10.1109/ICIPRM.2002.1014397","DOIUrl":null,"url":null,"abstract":"We have investigated the hydrogen sensitivity of InP HEMTs with a WSiN/Ti/Pt/Au gate stack. We have found that the impact of hydrogen on the threshold voltage of these devices is one order of magnitude smaller than conventional Ti/Pt/Au-gate HEMTs. This markedly improved reliability has been studied through a set of quasi-2D mechanical and electrostatic simulations. These showed that there are two main causes for the improvement of the H-sensitivity. First, the separation of the Ti-layer from the semiconductor by a thick WSiN layer significantly reduces the stress in the active layer. Additionally, the thinner heterostructure and the presence of an InP etch-stop layer with a small piezoelectric constant underneath the gate reduces the amount of threshold voltage shift that is caused by the mechanical stress.","PeriodicalId":145425,"journal":{"name":"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydrogen sensitivity of InP HEMTs with WSiN-based gate stack\",\"authors\":\"S. Mertens, J. D. del Alamo, T. Suemitsu, T. Enoki\",\"doi\":\"10.1109/ICIPRM.2002.1014397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the hydrogen sensitivity of InP HEMTs with a WSiN/Ti/Pt/Au gate stack. We have found that the impact of hydrogen on the threshold voltage of these devices is one order of magnitude smaller than conventional Ti/Pt/Au-gate HEMTs. This markedly improved reliability has been studied through a set of quasi-2D mechanical and electrostatic simulations. These showed that there are two main causes for the improvement of the H-sensitivity. First, the separation of the Ti-layer from the semiconductor by a thick WSiN layer significantly reduces the stress in the active layer. Additionally, the thinner heterostructure and the presence of an InP etch-stop layer with a small piezoelectric constant underneath the gate reduces the amount of threshold voltage shift that is caused by the mechanical stress.\",\"PeriodicalId\":145425,\"journal\":{\"name\":\"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2002.1014397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2002.1014397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogen sensitivity of InP HEMTs with WSiN-based gate stack
We have investigated the hydrogen sensitivity of InP HEMTs with a WSiN/Ti/Pt/Au gate stack. We have found that the impact of hydrogen on the threshold voltage of these devices is one order of magnitude smaller than conventional Ti/Pt/Au-gate HEMTs. This markedly improved reliability has been studied through a set of quasi-2D mechanical and electrostatic simulations. These showed that there are two main causes for the improvement of the H-sensitivity. First, the separation of the Ti-layer from the semiconductor by a thick WSiN layer significantly reduces the stress in the active layer. Additionally, the thinner heterostructure and the presence of an InP etch-stop layer with a small piezoelectric constant underneath the gate reduces the amount of threshold voltage shift that is caused by the mechanical stress.