基于wsin栅极堆的InP hemt的氢敏感性

S. Mertens, J. D. del Alamo, T. Suemitsu, T. Enoki
{"title":"基于wsin栅极堆的InP hemt的氢敏感性","authors":"S. Mertens, J. D. del Alamo, T. Suemitsu, T. Enoki","doi":"10.1109/ICIPRM.2002.1014397","DOIUrl":null,"url":null,"abstract":"We have investigated the hydrogen sensitivity of InP HEMTs with a WSiN/Ti/Pt/Au gate stack. We have found that the impact of hydrogen on the threshold voltage of these devices is one order of magnitude smaller than conventional Ti/Pt/Au-gate HEMTs. This markedly improved reliability has been studied through a set of quasi-2D mechanical and electrostatic simulations. These showed that there are two main causes for the improvement of the H-sensitivity. First, the separation of the Ti-layer from the semiconductor by a thick WSiN layer significantly reduces the stress in the active layer. Additionally, the thinner heterostructure and the presence of an InP etch-stop layer with a small piezoelectric constant underneath the gate reduces the amount of threshold voltage shift that is caused by the mechanical stress.","PeriodicalId":145425,"journal":{"name":"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydrogen sensitivity of InP HEMTs with WSiN-based gate stack\",\"authors\":\"S. Mertens, J. D. del Alamo, T. Suemitsu, T. Enoki\",\"doi\":\"10.1109/ICIPRM.2002.1014397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the hydrogen sensitivity of InP HEMTs with a WSiN/Ti/Pt/Au gate stack. We have found that the impact of hydrogen on the threshold voltage of these devices is one order of magnitude smaller than conventional Ti/Pt/Au-gate HEMTs. This markedly improved reliability has been studied through a set of quasi-2D mechanical and electrostatic simulations. These showed that there are two main causes for the improvement of the H-sensitivity. First, the separation of the Ti-layer from the semiconductor by a thick WSiN layer significantly reduces the stress in the active layer. Additionally, the thinner heterostructure and the presence of an InP etch-stop layer with a small piezoelectric constant underneath the gate reduces the amount of threshold voltage shift that is caused by the mechanical stress.\",\"PeriodicalId\":145425,\"journal\":{\"name\":\"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2002.1014397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2002.1014397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了采用WSiN/Ti/Pt/Au栅极堆叠的InP hemt的氢敏感性。我们发现氢对这些器件阈值电压的影响比传统的Ti/Pt/ au栅极hemt小一个数量级。通过一组准二维力学和静电模拟研究了这种显著提高的可靠性。结果表明,h灵敏度的提高主要有两个原因。首先,用厚WSiN层将ti层与半导体分离,显著降低了有源层中的应力。此外,更薄的异质结构和栅极下具有小压电常数的InP蚀刻停止层的存在减少了由机械应力引起的阈值电压漂移量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen sensitivity of InP HEMTs with WSiN-based gate stack
We have investigated the hydrogen sensitivity of InP HEMTs with a WSiN/Ti/Pt/Au gate stack. We have found that the impact of hydrogen on the threshold voltage of these devices is one order of magnitude smaller than conventional Ti/Pt/Au-gate HEMTs. This markedly improved reliability has been studied through a set of quasi-2D mechanical and electrostatic simulations. These showed that there are two main causes for the improvement of the H-sensitivity. First, the separation of the Ti-layer from the semiconductor by a thick WSiN layer significantly reduces the stress in the active layer. Additionally, the thinner heterostructure and the presence of an InP etch-stop layer with a small piezoelectric constant underneath the gate reduces the amount of threshold voltage shift that is caused by the mechanical stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信