免提驾驶功能的车道偏离风险评估

Daofei Li, Bin Xiao, Siyuan Lin
{"title":"免提驾驶功能的车道偏离风险评估","authors":"Daofei Li, Bin Xiao, Siyuan Lin","doi":"10.1109/CVCI54083.2021.9661247","DOIUrl":null,"url":null,"abstract":"Hands-free driving has become increasingly appealing and popular as an advanced form of SAE Level 2 automation, especially in premium brands. Such kind of advanced driver assistance system must ensure safety via a risk assessment module to initiate human take-over request if necessary. In lane keeping scenario, accurate trajectory prediction of the ego vehicle is vital to lane departure risk assessment. Thanks to automated driving, the actual control laws are known or can be learnt, which can support more precise prediction. Here we propose a Kalman predictor with actual control laws for future ego vehicle trajectory prediction. With a simulated scenario with varying velocity and road curvature, the algorithm is proved effective and outperforms traditional physics-based trajectory prediction benchmarks. Comparison between algorithms considering only lateral control law is also carried out, and results show that the algorithm considering both longitudinal and lateral control laws has better prediction accuracy. The proposed algorithm is promising to be applied in risk assessment module of hands-free driving functions.","PeriodicalId":419836,"journal":{"name":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lane Departure Risk Assessment for Hands-free Driving Functions\",\"authors\":\"Daofei Li, Bin Xiao, Siyuan Lin\",\"doi\":\"10.1109/CVCI54083.2021.9661247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hands-free driving has become increasingly appealing and popular as an advanced form of SAE Level 2 automation, especially in premium brands. Such kind of advanced driver assistance system must ensure safety via a risk assessment module to initiate human take-over request if necessary. In lane keeping scenario, accurate trajectory prediction of the ego vehicle is vital to lane departure risk assessment. Thanks to automated driving, the actual control laws are known or can be learnt, which can support more precise prediction. Here we propose a Kalman predictor with actual control laws for future ego vehicle trajectory prediction. With a simulated scenario with varying velocity and road curvature, the algorithm is proved effective and outperforms traditional physics-based trajectory prediction benchmarks. Comparison between algorithms considering only lateral control law is also carried out, and results show that the algorithm considering both longitudinal and lateral control laws has better prediction accuracy. The proposed algorithm is promising to be applied in risk assessment module of hands-free driving functions.\",\"PeriodicalId\":419836,\"journal\":{\"name\":\"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI54083.2021.9661247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI54083.2021.9661247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为SAE 2级自动驾驶的一种高级形式,免提驾驶越来越受欢迎,尤其是在高端品牌中。这种高级驾驶辅助系统必须通过风险评估模块确保安全,必要时启动人工接管请求。在车道保持场景下,自我车辆的准确轨迹预测对车道偏离风险评估至关重要。由于自动驾驶,实际的控制规律是已知的或可以学习的,这可以支持更精确的预测。本文提出了一种具有实际控制律的卡尔曼预测器,用于未来自我车辆的轨迹预测。在不同速度和道路曲率的模拟场景中,该算法被证明是有效的,并且优于传统的基于物理的轨迹预测基准。并与仅考虑横向控制律的算法进行了比较,结果表明,同时考虑纵向和横向控制律的算法具有更好的预测精度。该算法有望应用于免提驾驶功能的风险评估模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane Departure Risk Assessment for Hands-free Driving Functions
Hands-free driving has become increasingly appealing and popular as an advanced form of SAE Level 2 automation, especially in premium brands. Such kind of advanced driver assistance system must ensure safety via a risk assessment module to initiate human take-over request if necessary. In lane keeping scenario, accurate trajectory prediction of the ego vehicle is vital to lane departure risk assessment. Thanks to automated driving, the actual control laws are known or can be learnt, which can support more precise prediction. Here we propose a Kalman predictor with actual control laws for future ego vehicle trajectory prediction. With a simulated scenario with varying velocity and road curvature, the algorithm is proved effective and outperforms traditional physics-based trajectory prediction benchmarks. Comparison between algorithms considering only lateral control law is also carried out, and results show that the algorithm considering both longitudinal and lateral control laws has better prediction accuracy. The proposed algorithm is promising to be applied in risk assessment module of hands-free driving functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信