基于电容的硅光电倍增管阵列读出复用电路

Xishan Sun, K. Lou, Y. Shao
{"title":"基于电容的硅光电倍增管阵列读出复用电路","authors":"Xishan Sun, K. Lou, Y. Shao","doi":"10.1109/NSSMIC.2014.7431219","DOIUrl":null,"url":null,"abstract":"Several different multiplexing readout methods have been investigated for reading out silicon photomultiplier (SiPM) arrays. However, it is still challenging by using these methods to maintain signal integrity for overall good signal and imaging performance while reducing the number of readout and processing channels. One common issue to resistor based multiplexing method is the position-dependent timing shift among different channels, which can in principle be calibrated and corrected but add complexity to the detector calibration and operation process, and can be very difficult to apply for a practical PET system for routine imaging applications. To solve such and other problems, we explored a capacitor-based multiplexing method for our PET detector to read SiPM with a common cathode which has not been addressed previously. To achieve good detector performance, we required output signal without undershot/overshot suited for excellent charge integration, and without timing shift among different channels. The design applies a capacitor network to divide the charge of signals from a SiPM into two branches, with the division of charge based on the position of the SiPM in the network. Only one capacitor value is needed. The number of readout channels can be reduced from N×N to 2N. Evaluation circuit was tested with pulsed signals and a practical PET detector which consisted of an 8×8 SiPM array and LYSO scintillator array. The results showed that signal rise and fall times from different channels were the similar, no output signal undershot, and no timing shift among different channels. The resistive and capacitive multiplexing methods were compared for their noise level, energy resolution, rise time, and timing resolution as function of channel numbers. Capacitive multiplexing method shows better noise and timing performance with much better timing and energy consistent from all detector area. A PCB circuit board with capacitor multiplexing has been developed for PET detector applications.","PeriodicalId":144711,"journal":{"name":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Capacitor based multiplexing circuit for silicon photomultiplier array readout\",\"authors\":\"Xishan Sun, K. Lou, Y. Shao\",\"doi\":\"10.1109/NSSMIC.2014.7431219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several different multiplexing readout methods have been investigated for reading out silicon photomultiplier (SiPM) arrays. However, it is still challenging by using these methods to maintain signal integrity for overall good signal and imaging performance while reducing the number of readout and processing channels. One common issue to resistor based multiplexing method is the position-dependent timing shift among different channels, which can in principle be calibrated and corrected but add complexity to the detector calibration and operation process, and can be very difficult to apply for a practical PET system for routine imaging applications. To solve such and other problems, we explored a capacitor-based multiplexing method for our PET detector to read SiPM with a common cathode which has not been addressed previously. To achieve good detector performance, we required output signal without undershot/overshot suited for excellent charge integration, and without timing shift among different channels. The design applies a capacitor network to divide the charge of signals from a SiPM into two branches, with the division of charge based on the position of the SiPM in the network. Only one capacitor value is needed. The number of readout channels can be reduced from N×N to 2N. Evaluation circuit was tested with pulsed signals and a practical PET detector which consisted of an 8×8 SiPM array and LYSO scintillator array. The results showed that signal rise and fall times from different channels were the similar, no output signal undershot, and no timing shift among different channels. The resistive and capacitive multiplexing methods were compared for their noise level, energy resolution, rise time, and timing resolution as function of channel numbers. Capacitive multiplexing method shows better noise and timing performance with much better timing and energy consistent from all detector area. A PCB circuit board with capacitor multiplexing has been developed for PET detector applications.\",\"PeriodicalId\":144711,\"journal\":{\"name\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2014.7431219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2014.7431219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了几种不同的复用读出方法来读出硅光电倍增管(SiPM)阵列。然而,使用这些方法保持信号完整性以获得良好的信号和成像性能,同时减少读出和处理通道的数量,仍然具有挑战性。基于电阻的多路复用方法的一个常见问题是不同通道之间的位置相关时移,原则上可以校准和校正,但增加了探测器校准和操作过程的复杂性,并且很难应用于常规成像应用的实际PET系统。为了解决这些问题和其他问题,我们探索了一种基于电容的多路复用方法,用于PET检测器读取具有公共阴极的SiPM,这在以前没有解决过。为了获得良好的探测器性能,我们要求输出信号没有下冲/过冲,以适应出色的电荷集成,并且在不同通道之间没有时序偏移。本设计采用电容网络将SiPM发出的信号的电荷分成两个支路,根据SiPM在网络中的位置进行电荷的划分。只需要一个电容值。读出通道的数量可以从N×N减少到2N。用脉冲信号和由8×8 SiPM阵列和LYSO闪烁体阵列组成的实用PET探测器对评估电路进行了测试。结果表明,不同通道的信号上升和下降时间相似,没有输出信号下冲,不同通道之间没有时序移位。比较了电阻和电容复用方法的噪声水平、能量分辨率、上升时间和时序分辨率随通道数的变化。电容复用方法具有较好的噪声和时序性能,在各检测区域具有较好的时序和能量一致性。开发了一种用于PET检测器的电容复用PCB电路板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacitor based multiplexing circuit for silicon photomultiplier array readout
Several different multiplexing readout methods have been investigated for reading out silicon photomultiplier (SiPM) arrays. However, it is still challenging by using these methods to maintain signal integrity for overall good signal and imaging performance while reducing the number of readout and processing channels. One common issue to resistor based multiplexing method is the position-dependent timing shift among different channels, which can in principle be calibrated and corrected but add complexity to the detector calibration and operation process, and can be very difficult to apply for a practical PET system for routine imaging applications. To solve such and other problems, we explored a capacitor-based multiplexing method for our PET detector to read SiPM with a common cathode which has not been addressed previously. To achieve good detector performance, we required output signal without undershot/overshot suited for excellent charge integration, and without timing shift among different channels. The design applies a capacitor network to divide the charge of signals from a SiPM into two branches, with the division of charge based on the position of the SiPM in the network. Only one capacitor value is needed. The number of readout channels can be reduced from N×N to 2N. Evaluation circuit was tested with pulsed signals and a practical PET detector which consisted of an 8×8 SiPM array and LYSO scintillator array. The results showed that signal rise and fall times from different channels were the similar, no output signal undershot, and no timing shift among different channels. The resistive and capacitive multiplexing methods were compared for their noise level, energy resolution, rise time, and timing resolution as function of channel numbers. Capacitive multiplexing method shows better noise and timing performance with much better timing and energy consistent from all detector area. A PCB circuit board with capacitor multiplexing has been developed for PET detector applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信