{"title":"纳米器件中nbti缺陷表征的挑战与解决方案","authors":"J. F. Zhang, R. Gao, Z. Ji, W. Zhang","doi":"10.1109/IPFA47161.2019.8984899","DOIUrl":null,"url":null,"abstract":"Negative bias temperature instability (NBTI) is a well known ageing process for CMOS technologies. Many early works were focused on large devices where device-to-device variations (DDV) are negligible. As device sizes downscale to nanometers, DDV becomes substantial. NBTI is a stochastic process and causes a time-dependent DDV. Characterizing the NBTI-generated defects in nanoscale devices has two main challenges. First, current fluctuates with time and this introduces uncertainties in measurements. Second, the test time is long and costly: to characterize the NBTI-induced DDV, it is essential to repeat the same test on multiple devices. This work reviews recent progresses in addressing these issues. Based on the As-grown-Generation (AG) model, it will be shown that the measurement uncertainties are dominated by As-grown hole traps and can be removed by subtracting the average value. To reduce the test time, the voltage step stress (VSS) technique is combined with the Stress-Discharge -Recharge (SDR) method. This VSS-SDR technique reduces test time to within one hour per device. The model extracted by VSS-SDR is verified by comparing its prediction with the test data obtained under conventional constant voltage stress.","PeriodicalId":169775,"journal":{"name":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenge and solution for characterizing NBTI-generated defects in nanoscale devices\",\"authors\":\"J. F. Zhang, R. Gao, Z. Ji, W. Zhang\",\"doi\":\"10.1109/IPFA47161.2019.8984899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative bias temperature instability (NBTI) is a well known ageing process for CMOS technologies. Many early works were focused on large devices where device-to-device variations (DDV) are negligible. As device sizes downscale to nanometers, DDV becomes substantial. NBTI is a stochastic process and causes a time-dependent DDV. Characterizing the NBTI-generated defects in nanoscale devices has two main challenges. First, current fluctuates with time and this introduces uncertainties in measurements. Second, the test time is long and costly: to characterize the NBTI-induced DDV, it is essential to repeat the same test on multiple devices. This work reviews recent progresses in addressing these issues. Based on the As-grown-Generation (AG) model, it will be shown that the measurement uncertainties are dominated by As-grown hole traps and can be removed by subtracting the average value. To reduce the test time, the voltage step stress (VSS) technique is combined with the Stress-Discharge -Recharge (SDR) method. This VSS-SDR technique reduces test time to within one hour per device. The model extracted by VSS-SDR is verified by comparing its prediction with the test data obtained under conventional constant voltage stress.\",\"PeriodicalId\":169775,\"journal\":{\"name\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA47161.2019.8984899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA47161.2019.8984899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenge and solution for characterizing NBTI-generated defects in nanoscale devices
Negative bias temperature instability (NBTI) is a well known ageing process for CMOS technologies. Many early works were focused on large devices where device-to-device variations (DDV) are negligible. As device sizes downscale to nanometers, DDV becomes substantial. NBTI is a stochastic process and causes a time-dependent DDV. Characterizing the NBTI-generated defects in nanoscale devices has two main challenges. First, current fluctuates with time and this introduces uncertainties in measurements. Second, the test time is long and costly: to characterize the NBTI-induced DDV, it is essential to repeat the same test on multiple devices. This work reviews recent progresses in addressing these issues. Based on the As-grown-Generation (AG) model, it will be shown that the measurement uncertainties are dominated by As-grown hole traps and can be removed by subtracting the average value. To reduce the test time, the voltage step stress (VSS) technique is combined with the Stress-Discharge -Recharge (SDR) method. This VSS-SDR technique reduces test time to within one hour per device. The model extracted by VSS-SDR is verified by comparing its prediction with the test data obtained under conventional constant voltage stress.