用vilenkin - christensen决策图表示多值弯曲函数

S. Stankovic, M. Stankovic, J. Astola
{"title":"用vilenkin - christensen决策图表示多值弯曲函数","authors":"S. Stankovic, M. Stankovic, J. Astola","doi":"10.1109/ISMVL.2011.62","DOIUrl":null,"url":null,"abstract":"Bent functions are a class of discrete functions which exhibit the highest degree of nonlinearity. As such bent functions form an essential part of cryptographic systems. Original concept of bent functions defined in GF(2) can be extended to multiple-valued case. Multiple-valued bent functions are defined in therms of properties of their Vilenkin-Chrestenson spectra. Decision diagrams are a method of compact representation of discrete functions. Special types of decision diagrams have been introduced for various types of discrete functions. In this paper we demonstrate how Vilenkin-Chrestenson decision diagrams can be used for efficient representation of multiple-valued bent functions.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"30 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Representation of Multiple-Valued Bent Functions Using Vilenkin-Chrestenson Decision Diagrams\",\"authors\":\"S. Stankovic, M. Stankovic, J. Astola\",\"doi\":\"10.1109/ISMVL.2011.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bent functions are a class of discrete functions which exhibit the highest degree of nonlinearity. As such bent functions form an essential part of cryptographic systems. Original concept of bent functions defined in GF(2) can be extended to multiple-valued case. Multiple-valued bent functions are defined in therms of properties of their Vilenkin-Chrestenson spectra. Decision diagrams are a method of compact representation of discrete functions. Special types of decision diagrams have been introduced for various types of discrete functions. In this paper we demonstrate how Vilenkin-Chrestenson decision diagrams can be used for efficient representation of multiple-valued bent functions.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"30 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

弯曲函数是一类非线性程度最高的离散函数。因此,弯曲函数构成了密码系统的重要组成部分。在GF(2)中定义的弯曲函数的原始概念可以推广到多值情况。根据多值弯曲函数的维伦金-克里斯滕森谱的性质定义了多值弯曲函数。决策图是离散函数的一种紧凑表示方法。对于不同类型的离散函数,已经引入了特殊类型的决策图。在本文中,我们证明了如何使用vilenkin - christensen决策图来有效地表示多值弯曲函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of Multiple-Valued Bent Functions Using Vilenkin-Chrestenson Decision Diagrams
Bent functions are a class of discrete functions which exhibit the highest degree of nonlinearity. As such bent functions form an essential part of cryptographic systems. Original concept of bent functions defined in GF(2) can be extended to multiple-valued case. Multiple-valued bent functions are defined in therms of properties of their Vilenkin-Chrestenson spectra. Decision diagrams are a method of compact representation of discrete functions. Special types of decision diagrams have been introduced for various types of discrete functions. In this paper we demonstrate how Vilenkin-Chrestenson decision diagrams can be used for efficient representation of multiple-valued bent functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信