深空衰落信道中AR4JA码的研究

Hui Li, Jianan Gao, Mingchuan Yang, Gu Lv, Ming Li, Qing Guo
{"title":"深空衰落信道中AR4JA码的研究","authors":"Hui Li, Jianan Gao, Mingchuan Yang, Gu Lv, Ming Li, Qing Guo","doi":"10.1109/ChinaCom.2012.6417466","DOIUrl":null,"url":null,"abstract":"Because of good systematicness of its parity check matrix, linear relationship between the minimum distance and code length, and inheritance of punching property of ARA(accumulate repeat accumulate) code, AR4JA (accumulate-repeat-4-jagged-accumulate) code is thought to be the most suitable error correction channel code for deep space reliable communication in the future. Given that the accurate channel model of deep communication environment is lacked, in the paper, the absorption, reflection or other uncertain effects of different kinds of particles in aerospace were described with Rician fading model. Then the performance of AR4JA code in deep space Rician fading channel with BP algorithm and Min-Sum algorithm were studied in the paper. Simulation results show that in Rician fading channel, compared with BP algorithm, Min-Sum algorithm declines decoding complexity with few gain loss, which is beneficial to realize miniaturization of deep space communication receiver. Through further analysis, relationship of iteration times of Min-Sum algorithm and SNR is also given for the better use of decoding AR4JA codes by Min-Sum algorithm.","PeriodicalId":143739,"journal":{"name":"7th International Conference on Communications and Networking in China","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on AR4JA code in deep space fading channel\",\"authors\":\"Hui Li, Jianan Gao, Mingchuan Yang, Gu Lv, Ming Li, Qing Guo\",\"doi\":\"10.1109/ChinaCom.2012.6417466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of good systematicness of its parity check matrix, linear relationship between the minimum distance and code length, and inheritance of punching property of ARA(accumulate repeat accumulate) code, AR4JA (accumulate-repeat-4-jagged-accumulate) code is thought to be the most suitable error correction channel code for deep space reliable communication in the future. Given that the accurate channel model of deep communication environment is lacked, in the paper, the absorption, reflection or other uncertain effects of different kinds of particles in aerospace were described with Rician fading model. Then the performance of AR4JA code in deep space Rician fading channel with BP algorithm and Min-Sum algorithm were studied in the paper. Simulation results show that in Rician fading channel, compared with BP algorithm, Min-Sum algorithm declines decoding complexity with few gain loss, which is beneficial to realize miniaturization of deep space communication receiver. Through further analysis, relationship of iteration times of Min-Sum algorithm and SNR is also given for the better use of decoding AR4JA codes by Min-Sum algorithm.\",\"PeriodicalId\":143739,\"journal\":{\"name\":\"7th International Conference on Communications and Networking in China\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Communications and Networking in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaCom.2012.6417466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Communications and Networking in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaCom.2012.6417466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

AR4JA (accumulate-repeat-4- jag锯齿-accumulate)码由于其奇偶校验矩阵的良好系统性、最小距离与码长之间的线性关系以及ARA(accumulate -repeat-4- jag锯齿-accumulate)码的冲孔特性的继承性,被认为是未来最适合深空可靠通信的纠错信道码。针对缺乏准确的深通信环境信道模型的问题,本文采用时域衰落模型描述了航天中不同粒子的吸收、反射等不确定效应。然后用BP算法和最小和算法研究了AR4JA码在深空衰落信道中的性能。仿真结果表明,在时域衰落信道中,与BP算法相比,最小和算法以较小的增益损失降低了译码复杂度,有利于实现深空通信接收机的小型化。通过进一步分析,给出了最小和算法的迭代次数与信噪比的关系,以便更好地利用最小和算法解码AR4JA码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on AR4JA code in deep space fading channel
Because of good systematicness of its parity check matrix, linear relationship between the minimum distance and code length, and inheritance of punching property of ARA(accumulate repeat accumulate) code, AR4JA (accumulate-repeat-4-jagged-accumulate) code is thought to be the most suitable error correction channel code for deep space reliable communication in the future. Given that the accurate channel model of deep communication environment is lacked, in the paper, the absorption, reflection or other uncertain effects of different kinds of particles in aerospace were described with Rician fading model. Then the performance of AR4JA code in deep space Rician fading channel with BP algorithm and Min-Sum algorithm were studied in the paper. Simulation results show that in Rician fading channel, compared with BP algorithm, Min-Sum algorithm declines decoding complexity with few gain loss, which is beneficial to realize miniaturization of deep space communication receiver. Through further analysis, relationship of iteration times of Min-Sum algorithm and SNR is also given for the better use of decoding AR4JA codes by Min-Sum algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信