MELLITUS糖尿病患者分类的支持机(SVM)的执行

Favorisen R. Lumbanraja, Fanni Lufiana, Yunda Heningtyas, Kurnia Muludi
{"title":"MELLITUS糖尿病患者分类的支持机(SVM)的执行","authors":"Favorisen R. Lumbanraja, Fanni Lufiana, Yunda Heningtyas, Kurnia Muludi","doi":"10.23960/komputasi.v10i1.2940","DOIUrl":null,"url":null,"abstract":"Diabetes Mellitus (DM) is a chronic disease characterized by the body's inability to metabolize carbohydrates, fats, and proteins, resulting in increased blood sugar (hyperglycemia) due to low insulin levels. Diabetes is due to a combination of heredity (genetics) and unhealthy lifestyles. Hemoglobin A1c is a blood test used to diagnose and manage diabetes patients when measuring blood sugar levels. This study aims to analyze predictive models for the classification of people with diabetes using R Shiny and evaluate the results of the support vector machine method's classification performance. There are many ways to diagnose diabetes, and the support vector machine is one of the machine learning algorithms used in this study's classification case (SVM). This study uses data from Diabetes 130-US Hospital For Years 1999-2008, which was sourced from the UCI Machine Learning Repository and consists of 34 variables and 84900 records, with dataset distribution and testing techniques using the 10-fold cross-validation method and three kernels in modeling using SVM, namely linear, Gaussian, and polynomial. The results obtained are a simple predictive model analysis system for classifying people with diabetes with shiny, making it easier for users to find out the prediction results and obtain the highest accuracy result, which is 82.76 percent of the gaussian kernel. Keywords: diabetes mellitus; HbA1c; classification; support vector machine; 10-fold cross validation.","PeriodicalId":292117,"journal":{"name":"Jurnal Komputasi","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPLEMENTASI SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI PEDERITA DIABETES MELLITUS\",\"authors\":\"Favorisen R. Lumbanraja, Fanni Lufiana, Yunda Heningtyas, Kurnia Muludi\",\"doi\":\"10.23960/komputasi.v10i1.2940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes Mellitus (DM) is a chronic disease characterized by the body's inability to metabolize carbohydrates, fats, and proteins, resulting in increased blood sugar (hyperglycemia) due to low insulin levels. Diabetes is due to a combination of heredity (genetics) and unhealthy lifestyles. Hemoglobin A1c is a blood test used to diagnose and manage diabetes patients when measuring blood sugar levels. This study aims to analyze predictive models for the classification of people with diabetes using R Shiny and evaluate the results of the support vector machine method's classification performance. There are many ways to diagnose diabetes, and the support vector machine is one of the machine learning algorithms used in this study's classification case (SVM). This study uses data from Diabetes 130-US Hospital For Years 1999-2008, which was sourced from the UCI Machine Learning Repository and consists of 34 variables and 84900 records, with dataset distribution and testing techniques using the 10-fold cross-validation method and three kernels in modeling using SVM, namely linear, Gaussian, and polynomial. The results obtained are a simple predictive model analysis system for classifying people with diabetes with shiny, making it easier for users to find out the prediction results and obtain the highest accuracy result, which is 82.76 percent of the gaussian kernel. Keywords: diabetes mellitus; HbA1c; classification; support vector machine; 10-fold cross validation.\",\"PeriodicalId\":292117,\"journal\":{\"name\":\"Jurnal Komputasi\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Komputasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23960/komputasi.v10i1.2940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komputasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/komputasi.v10i1.2940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病(DM)是一种慢性疾病,其特征是身体无法代谢碳水化合物、脂肪和蛋白质,导致胰岛素水平低导致血糖升高(高血糖症)。糖尿病是由遗传和不健康的生活方式共同造成的。糖化血红蛋白是测量血糖水平时用于诊断和管理糖尿病患者的血液测试。本研究旨在分析使用R Shiny对糖尿病患者进行分类的预测模型,并评估支持向量机方法的分类性能结果。糖尿病的诊断方法有很多,支持向量机是本研究分类案例(SVM)中使用的机器学习算法之一。本研究使用1999-2008年美国糖尿病130医院的数据,这些数据来自UCI机器学习存储库,由34个变量和84900条记录组成,数据集分布和测试技术使用10倍交叉验证方法,使用支持向量机建模的三个核,即线性,高斯和多项式。得到的结果是一个简单的用shiny对糖尿病人进行分类的预测模型分析系统,让用户更容易找到预测结果,得到了准确率最高的结果,为高斯核的82.76%。关键词:糖尿病;糖化血红蛋白;分类;支持向量机;10倍交叉验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPLEMENTASI SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI PEDERITA DIABETES MELLITUS
Diabetes Mellitus (DM) is a chronic disease characterized by the body's inability to metabolize carbohydrates, fats, and proteins, resulting in increased blood sugar (hyperglycemia) due to low insulin levels. Diabetes is due to a combination of heredity (genetics) and unhealthy lifestyles. Hemoglobin A1c is a blood test used to diagnose and manage diabetes patients when measuring blood sugar levels. This study aims to analyze predictive models for the classification of people with diabetes using R Shiny and evaluate the results of the support vector machine method's classification performance. There are many ways to diagnose diabetes, and the support vector machine is one of the machine learning algorithms used in this study's classification case (SVM). This study uses data from Diabetes 130-US Hospital For Years 1999-2008, which was sourced from the UCI Machine Learning Repository and consists of 34 variables and 84900 records, with dataset distribution and testing techniques using the 10-fold cross-validation method and three kernels in modeling using SVM, namely linear, Gaussian, and polynomial. The results obtained are a simple predictive model analysis system for classifying people with diabetes with shiny, making it easier for users to find out the prediction results and obtain the highest accuracy result, which is 82.76 percent of the gaussian kernel. Keywords: diabetes mellitus; HbA1c; classification; support vector machine; 10-fold cross validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信