热载流子退化的建模:物理和有争议的问题

S. Tyaginov, T. Grasser
{"title":"热载流子退化的建模:物理和有争议的问题","authors":"S. Tyaginov, T. Grasser","doi":"10.1109/IIRW.2012.6468962","DOIUrl":null,"url":null,"abstract":"We discuss and analyze the main features of hot-carrier degradation (HCD) which are a strong localization at the drain-side of the device, the interplay between single- and multiple-particle processes of Si-H bond dissociation, the transition of the worst-case scenario when going from long- to short-channel devices, and its temperature dependence. These main peculiarities are then linked to the physical processes responsible for HCD. We show that the problem can be conditionally separated into three main subtasks: the carrier transport aspect, the kinetics of defect generation, and modeling of the degraded devices. From this perspective, the most important physics-based models and their validity are discussed. In order to obtain a most accurate description of HCD, we try to minimize the number of empirical parameters by basing our own model on a thorough treatment of carrier transport. Finally, we discuss one of the most important open obstacles towards the understanding of HCD, namely whether bulk oxide traps contribute to the damage or not.","PeriodicalId":165120,"journal":{"name":"2012 IEEE International Integrated Reliability Workshop Final Report","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Modeling of hot-carrier degradation: Physics and controversial issues\",\"authors\":\"S. Tyaginov, T. Grasser\",\"doi\":\"10.1109/IIRW.2012.6468962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss and analyze the main features of hot-carrier degradation (HCD) which are a strong localization at the drain-side of the device, the interplay between single- and multiple-particle processes of Si-H bond dissociation, the transition of the worst-case scenario when going from long- to short-channel devices, and its temperature dependence. These main peculiarities are then linked to the physical processes responsible for HCD. We show that the problem can be conditionally separated into three main subtasks: the carrier transport aspect, the kinetics of defect generation, and modeling of the degraded devices. From this perspective, the most important physics-based models and their validity are discussed. In order to obtain a most accurate description of HCD, we try to minimize the number of empirical parameters by basing our own model on a thorough treatment of carrier transport. Finally, we discuss one of the most important open obstacles towards the understanding of HCD, namely whether bulk oxide traps contribute to the damage or not.\",\"PeriodicalId\":165120,\"journal\":{\"name\":\"2012 IEEE International Integrated Reliability Workshop Final Report\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Integrated Reliability Workshop Final Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIRW.2012.6468962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Integrated Reliability Workshop Final Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2012.6468962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们讨论和分析了热载子降解(HCD)的主要特征,即器件漏极侧的强局部化,Si-H键解离的单粒子和多粒子过程之间的相互作用,从长通道器件到短通道器件的最坏情况的转变,以及它的温度依赖性。然后将这些主要特性与负责HCD的物理过程联系起来。我们表明,该问题可以有条件地分为三个主要的子任务:载流子传输方面,缺陷产生的动力学和退化设备的建模。从这个角度出发,讨论了最重要的基于物理的模型及其有效性。为了获得对HCD最准确的描述,我们试图通过将我们自己的模型建立在对载流子运输的彻底处理的基础上,来最小化经验参数的数量。最后,我们讨论了理解HCD的一个最重要的开放障碍,即大块氧化物陷阱是否会导致损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of hot-carrier degradation: Physics and controversial issues
We discuss and analyze the main features of hot-carrier degradation (HCD) which are a strong localization at the drain-side of the device, the interplay between single- and multiple-particle processes of Si-H bond dissociation, the transition of the worst-case scenario when going from long- to short-channel devices, and its temperature dependence. These main peculiarities are then linked to the physical processes responsible for HCD. We show that the problem can be conditionally separated into three main subtasks: the carrier transport aspect, the kinetics of defect generation, and modeling of the degraded devices. From this perspective, the most important physics-based models and their validity are discussed. In order to obtain a most accurate description of HCD, we try to minimize the number of empirical parameters by basing our own model on a thorough treatment of carrier transport. Finally, we discuss one of the most important open obstacles towards the understanding of HCD, namely whether bulk oxide traps contribute to the damage or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信