从描述到代码:从维护人员描述预测维护代码的方法

Srini Anand, Robert M. Keefer
{"title":"从描述到代码:从维护人员描述预测维护代码的方法","authors":"Srini Anand, Robert M. Keefer","doi":"10.21595/marc.2022.22798","DOIUrl":null,"url":null,"abstract":"Aircraft maintenance crews enter the actions performed, the time required to complete the actions, and process followed to complete the action into a system of record that may be used to support future important operational decisions such as part inventory and staffing levels. Unfortunately, the actions performed by maintainers may not align with structured, predetermined codes for such actions. This discrepancy combined with an overabundance of structured codes has led to incorrect and polluted maintenance data that cannot be used in decision making. Typically, the unstructured textual fields accurately record the maintenance action, but are inaccessible to common reporting approaches. The textual fields can be used to cleanse the structured fields, thereby making more data available to support operational decision making. This paper introduces a natural language processing pipeline to predict C-17 US Air Force maintenance codes from an unstructured, shorthand text record. This research aims to cleanse problematic structured fields for further use in operational efficiency and asset reliability measures. Novel use of text processing, extraction, clustering, and classification approaches was employed to develop a natural language processing pipeline suited to the peculiarities of short, jargon-based text. The pipeline evaluates the frequency of structured field values within the datase and selects an appropriate machine learning model to optimize the predictive accuracy. Three different predictive methods were investigated to determine an optimal approach: a Logistic Regression Classifier, a Random Forrest Classifier, and Unsupervised techniques. This pipeline predicted structured fields with an average accuracy of 93 % across the five maintenance codes.","PeriodicalId":285529,"journal":{"name":"Maintenance, Reliability and Condition Monitoring","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From description to code: a method to predict maintenance codes from maintainer descriptions\",\"authors\":\"Srini Anand, Robert M. Keefer\",\"doi\":\"10.21595/marc.2022.22798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aircraft maintenance crews enter the actions performed, the time required to complete the actions, and process followed to complete the action into a system of record that may be used to support future important operational decisions such as part inventory and staffing levels. Unfortunately, the actions performed by maintainers may not align with structured, predetermined codes for such actions. This discrepancy combined with an overabundance of structured codes has led to incorrect and polluted maintenance data that cannot be used in decision making. Typically, the unstructured textual fields accurately record the maintenance action, but are inaccessible to common reporting approaches. The textual fields can be used to cleanse the structured fields, thereby making more data available to support operational decision making. This paper introduces a natural language processing pipeline to predict C-17 US Air Force maintenance codes from an unstructured, shorthand text record. This research aims to cleanse problematic structured fields for further use in operational efficiency and asset reliability measures. Novel use of text processing, extraction, clustering, and classification approaches was employed to develop a natural language processing pipeline suited to the peculiarities of short, jargon-based text. The pipeline evaluates the frequency of structured field values within the datase and selects an appropriate machine learning model to optimize the predictive accuracy. Three different predictive methods were investigated to determine an optimal approach: a Logistic Regression Classifier, a Random Forrest Classifier, and Unsupervised techniques. This pipeline predicted structured fields with an average accuracy of 93 % across the five maintenance codes.\",\"PeriodicalId\":285529,\"journal\":{\"name\":\"Maintenance, Reliability and Condition Monitoring\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maintenance, Reliability and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/marc.2022.22798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maintenance, Reliability and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/marc.2022.22798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

飞机维修人员将执行的操作、完成操作所需的时间以及完成操作所遵循的过程输入到一个记录系统中,该系统可用于支持未来重要的操作决策,如零件库存和人员配备水平。不幸的是,维护者执行的操作可能与结构化的、预先确定的操作代码不一致。这种差异与过多的结构化代码相结合,导致了不正确和受污染的维护数据,无法用于决策制定。通常,非结构化文本字段准确地记录了维护操作,但是普通报告方法无法访问。文本字段可用于清理结构化字段,从而使更多的数据可用来支持操作决策。本文介绍了一种自然语言处理管道,用于从非结构化的速记文本记录中预测C-17美国空军维护代码。本研究旨在清理有问题的结构化油田,以便进一步用于运营效率和资产可靠性措施。采用新颖的文本处理、提取、聚类和分类方法来开发适合于基于行话的短文本特性的自然语言处理管道。管道评估数据库中结构化字段值的频率,并选择合适的机器学习模型来优化预测精度。研究了三种不同的预测方法,以确定最佳方法:逻辑回归分类器,随机福雷斯特分类器和无监督技术。该管道在五个维护代码中预测结构化字段的平均准确率为93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From description to code: a method to predict maintenance codes from maintainer descriptions
Aircraft maintenance crews enter the actions performed, the time required to complete the actions, and process followed to complete the action into a system of record that may be used to support future important operational decisions such as part inventory and staffing levels. Unfortunately, the actions performed by maintainers may not align with structured, predetermined codes for such actions. This discrepancy combined with an overabundance of structured codes has led to incorrect and polluted maintenance data that cannot be used in decision making. Typically, the unstructured textual fields accurately record the maintenance action, but are inaccessible to common reporting approaches. The textual fields can be used to cleanse the structured fields, thereby making more data available to support operational decision making. This paper introduces a natural language processing pipeline to predict C-17 US Air Force maintenance codes from an unstructured, shorthand text record. This research aims to cleanse problematic structured fields for further use in operational efficiency and asset reliability measures. Novel use of text processing, extraction, clustering, and classification approaches was employed to develop a natural language processing pipeline suited to the peculiarities of short, jargon-based text. The pipeline evaluates the frequency of structured field values within the datase and selects an appropriate machine learning model to optimize the predictive accuracy. Three different predictive methods were investigated to determine an optimal approach: a Logistic Regression Classifier, a Random Forrest Classifier, and Unsupervised techniques. This pipeline predicted structured fields with an average accuracy of 93 % across the five maintenance codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信