三维fpga的变化感知路由

Chen Dong, S. Chilstedt, Deming Chen
{"title":"三维fpga的变化感知路由","authors":"Chen Dong, S. Chilstedt, Deming Chen","doi":"10.1109/ISVLSI.2009.44","DOIUrl":null,"url":null,"abstract":"To maximize the potential of three-dimensional integrated circuit architectures, 3D CAD tools must be developed that are on-par with their 2D counterparts. In this paper, we present a statistical static timing analysis (SSTA) engine designed to deal with both the uncorrelated and correlated variations in 3D FPGAs. We consider the effects of intra-die and inter-die variation. Using the 3D physical design tool TPR as a base, we develop a new 3D routing algorithm which improves the average performance of two layer designs by over 22% and three layer designs by over 27%. To the best of our knowledge, this is the first physical design tool to consider variation in the routing and timing analysis of 3D FPGAs.","PeriodicalId":137508,"journal":{"name":"2009 IEEE Computer Society Annual Symposium on VLSI","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Variation Aware Routing for Three-Dimensional FPGAs\",\"authors\":\"Chen Dong, S. Chilstedt, Deming Chen\",\"doi\":\"10.1109/ISVLSI.2009.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To maximize the potential of three-dimensional integrated circuit architectures, 3D CAD tools must be developed that are on-par with their 2D counterparts. In this paper, we present a statistical static timing analysis (SSTA) engine designed to deal with both the uncorrelated and correlated variations in 3D FPGAs. We consider the effects of intra-die and inter-die variation. Using the 3D physical design tool TPR as a base, we develop a new 3D routing algorithm which improves the average performance of two layer designs by over 22% and three layer designs by over 27%. To the best of our knowledge, this is the first physical design tool to consider variation in the routing and timing analysis of 3D FPGAs.\",\"PeriodicalId\":137508,\"journal\":{\"name\":\"2009 IEEE Computer Society Annual Symposium on VLSI\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Annual Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2009.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2009.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了最大限度地发挥三维集成电路架构的潜力,必须开发与2D对等的3D CAD工具。在本文中,我们提出了一个统计静态时序分析(SSTA)引擎,旨在处理三维fpga中不相关和相关的变化。我们考虑了模内和模间变化的影响。以三维物理设计工具TPR为基础,我们开发了一种新的三维路由算法,使两层设计的平均性能提高22%以上,三层设计的平均性能提高27%以上。据我们所知,这是第一个考虑3D fpga路由和时序分析变化的物理设计工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variation Aware Routing for Three-Dimensional FPGAs
To maximize the potential of three-dimensional integrated circuit architectures, 3D CAD tools must be developed that are on-par with their 2D counterparts. In this paper, we present a statistical static timing analysis (SSTA) engine designed to deal with both the uncorrelated and correlated variations in 3D FPGAs. We consider the effects of intra-die and inter-die variation. Using the 3D physical design tool TPR as a base, we develop a new 3D routing algorithm which improves the average performance of two layer designs by over 22% and three layer designs by over 27%. To the best of our knowledge, this is the first physical design tool to consider variation in the routing and timing analysis of 3D FPGAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信