深度时空网络,实现准确的人物再识别

Q. Hong, N. N. Tuan, T. T. Quang, Dung Nguyen Tien, C. Le
{"title":"深度时空网络,实现准确的人物再识别","authors":"Q. Hong, N. N. Tuan, T. T. Quang, Dung Nguyen Tien, C. Le","doi":"10.1109/INFOC.2017.8001673","DOIUrl":null,"url":null,"abstract":"Feature extraction is one of two core tasks of a person re-identification besides metric learning. Building an effective feature extractor is the common goal of any research in the field. In this work, we propose a deep spatio-temporal network model which consists of a VGG-16 as a spatial feature extractor and a GRU network as an image sequence descriptor. Two temporal pooling techniques are investigated to produce compact yet discriminative sequence-level representation from a sequence of arbitrary length. To highlight the effectiveness of the final sequence-level feature set, we use a cosine distance metric learning to find an accurate probe-gallery pair. Experimental results on the ilIDS-VID and PRID 2011 dataset show that our method is slightly better on one dataset and significantly better on the other than state-of-the-art ones.","PeriodicalId":109602,"journal":{"name":"2017 International Conference on Information and Communications (ICIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep spatio-temporal network for accurate person re-identification\",\"authors\":\"Q. Hong, N. N. Tuan, T. T. Quang, Dung Nguyen Tien, C. Le\",\"doi\":\"10.1109/INFOC.2017.8001673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction is one of two core tasks of a person re-identification besides metric learning. Building an effective feature extractor is the common goal of any research in the field. In this work, we propose a deep spatio-temporal network model which consists of a VGG-16 as a spatial feature extractor and a GRU network as an image sequence descriptor. Two temporal pooling techniques are investigated to produce compact yet discriminative sequence-level representation from a sequence of arbitrary length. To highlight the effectiveness of the final sequence-level feature set, we use a cosine distance metric learning to find an accurate probe-gallery pair. Experimental results on the ilIDS-VID and PRID 2011 dataset show that our method is slightly better on one dataset and significantly better on the other than state-of-the-art ones.\",\"PeriodicalId\":109602,\"journal\":{\"name\":\"2017 International Conference on Information and Communications (ICIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Information and Communications (ICIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOC.2017.8001673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Information and Communications (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOC.2017.8001673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

特征提取是除度量学习外,人物再识别的两大核心任务之一。构建一个有效的特征提取器是该领域所有研究的共同目标。在这项工作中,我们提出了一个深度时空网络模型,该模型由VGG-16作为空间特征提取器和GRU网络作为图像序列描述符组成。研究了两种时间池化技术,以从任意长度的序列中产生紧凑但有区别的序列级表示。为了突出最终序列级特征集的有效性,我们使用余弦距离度量学习来找到准确的探针库对。在ilIDS-VID和PRID 2011数据集上的实验结果表明,我们的方法在一个数据集上略好,在另一个数据集上明显好于最先进的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep spatio-temporal network for accurate person re-identification
Feature extraction is one of two core tasks of a person re-identification besides metric learning. Building an effective feature extractor is the common goal of any research in the field. In this work, we propose a deep spatio-temporal network model which consists of a VGG-16 as a spatial feature extractor and a GRU network as an image sequence descriptor. Two temporal pooling techniques are investigated to produce compact yet discriminative sequence-level representation from a sequence of arbitrary length. To highlight the effectiveness of the final sequence-level feature set, we use a cosine distance metric learning to find an accurate probe-gallery pair. Experimental results on the ilIDS-VID and PRID 2011 dataset show that our method is slightly better on one dataset and significantly better on the other than state-of-the-art ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信