Arokia Nathan, R. Murthy, Q. Ma, B. Park, H. Pham, A. Sazonov
{"title":"用于x射线大面积成像的非晶硅探测器和薄膜晶体管技术","authors":"Arokia Nathan, R. Murthy, Q. Ma, B. Park, H. Pham, A. Sazonov","doi":"10.1109/ICMEL.2000.840533","DOIUrl":null,"url":null,"abstract":"This paper will review amorphous silicon imaging technology in terms of the detector operating principles, electrical and optoelectronic characteristics, and stability. Also, issues pertinent to thin film transistor stability will be presented along with optimization of materials and processing conditions for reduced V/sub T/-shift and leakage current. Selected results are shown for X-ray and optical detectors, thin film transistors, and integrated X-ray pixel structures. Extension of the current fabrication processes to low (<100/spl deg/C) temperature, enabling fabrication of thin film electronics on flexible (polymer) substrates, will also be discussed along with preliminary results.","PeriodicalId":215956,"journal":{"name":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Amorphous silicon detector and thin film transistor technology for large area imaging of X-rays\",\"authors\":\"Arokia Nathan, R. Murthy, Q. Ma, B. Park, H. Pham, A. Sazonov\",\"doi\":\"10.1109/ICMEL.2000.840533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will review amorphous silicon imaging technology in terms of the detector operating principles, electrical and optoelectronic characteristics, and stability. Also, issues pertinent to thin film transistor stability will be presented along with optimization of materials and processing conditions for reduced V/sub T/-shift and leakage current. Selected results are shown for X-ray and optical detectors, thin film transistors, and integrated X-ray pixel structures. Extension of the current fabrication processes to low (<100/spl deg/C) temperature, enabling fabrication of thin film electronics on flexible (polymer) substrates, will also be discussed along with preliminary results.\",\"PeriodicalId\":215956,\"journal\":{\"name\":\"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEL.2000.840533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEL.2000.840533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Amorphous silicon detector and thin film transistor technology for large area imaging of X-rays
This paper will review amorphous silicon imaging technology in terms of the detector operating principles, electrical and optoelectronic characteristics, and stability. Also, issues pertinent to thin film transistor stability will be presented along with optimization of materials and processing conditions for reduced V/sub T/-shift and leakage current. Selected results are shown for X-ray and optical detectors, thin film transistors, and integrated X-ray pixel structures. Extension of the current fabrication processes to low (<100/spl deg/C) temperature, enabling fabrication of thin film electronics on flexible (polymer) substrates, will also be discussed along with preliminary results.