基于Choquet积分的生物特征评分融合识别模型

Khalid Fakhar, M. El Aroussi, Mohamed Nabil Saidi, D. Aboutajdine
{"title":"基于Choquet积分的生物特征评分融合识别模型","authors":"Khalid Fakhar, M. El Aroussi, Mohamed Nabil Saidi, D. Aboutajdine","doi":"10.1109/EITECH.2015.7162955","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method for multibiometric identification system based on fusion at matching score level using the Choquet integral and the associated fuzzy measure. The output of each biometric matcher is modeled as a fuzzy set using membership functions, and the corresponding fuzzy entropy estimates the reliability of the information provided by each biometric matcher. Then, the fuzzy densities are generated based on training accuracy and fuzzy entropy. The results are aggregated using the Choquet integral. This novel method can measure the importance of each biometric matcher and improves the accuracy of the fusion model significantly.","PeriodicalId":405923,"journal":{"name":"2015 International Conference on Electrical and Information Technologies (ICEIT)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biometric score fusion in identification model using the Choquet integral\",\"authors\":\"Khalid Fakhar, M. El Aroussi, Mohamed Nabil Saidi, D. Aboutajdine\",\"doi\":\"10.1109/EITECH.2015.7162955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel method for multibiometric identification system based on fusion at matching score level using the Choquet integral and the associated fuzzy measure. The output of each biometric matcher is modeled as a fuzzy set using membership functions, and the corresponding fuzzy entropy estimates the reliability of the information provided by each biometric matcher. Then, the fuzzy densities are generated based on training accuracy and fuzzy entropy. The results are aggregated using the Choquet integral. This novel method can measure the importance of each biometric matcher and improves the accuracy of the fusion model significantly.\",\"PeriodicalId\":405923,\"journal\":{\"name\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2015.7162955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2015.7162955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于匹配分数水平融合的多生物特征识别方法,该方法采用了Choquet积分和相关模糊测度。每个生物特征匹配器的输出使用隶属函数建模为模糊集,相应的模糊熵估计每个生物特征匹配器提供的信息的可靠性。然后,基于训练精度和模糊熵生成模糊密度。使用Choquet积分对结果进行聚合。该方法可以衡量每个生物特征匹配器的重要性,显著提高了融合模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric score fusion in identification model using the Choquet integral
In this paper, we present a novel method for multibiometric identification system based on fusion at matching score level using the Choquet integral and the associated fuzzy measure. The output of each biometric matcher is modeled as a fuzzy set using membership functions, and the corresponding fuzzy entropy estimates the reliability of the information provided by each biometric matcher. Then, the fuzzy densities are generated based on training accuracy and fuzzy entropy. The results are aggregated using the Choquet integral. This novel method can measure the importance of each biometric matcher and improves the accuracy of the fusion model significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信