V. Derbek, C. Steger, R. Weiss, Daniel Wischounig, Josef Preishuber-Pflügl, M. Pistauer
{"title":"超高频RFID仿真平台","authors":"V. Derbek, C. Steger, R. Weiss, Daniel Wischounig, Josef Preishuber-Pflügl, M. Pistauer","doi":"10.1109/DATE.2007.364410","DOIUrl":null,"url":null,"abstract":"Developing modern integrated and embedded systems require well-designed processes to ensure flexibility and independency. These features are related to exchangeability of hardware targets and to the ability of choosing the target at a very late stage in the implementation process. Especially in the field of ultra high frequency radio frequency identification (UHF RFID) the model-based design approach leads to expected results. Beside a clear design process, which is applied in this work to build the required system architecture, the scope for UHF RFID simulations is defined and an extendable platform based on the MathWorks Matlab Simulinkreg is developed. This simulation platform, based on a multi-processor hardware target, using a Texas Instruments TMS320C6416 digital signal processor is able to run UHF RFID tag simulations of very high complexity. The highest effort is made to ensure flexibility to handle future simulation models on the same hardware target, realized by the continuous design and implementation flow of this platform based on model-based design","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Simulation Platform for UHF RFID\",\"authors\":\"V. Derbek, C. Steger, R. Weiss, Daniel Wischounig, Josef Preishuber-Pflügl, M. Pistauer\",\"doi\":\"10.1109/DATE.2007.364410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing modern integrated and embedded systems require well-designed processes to ensure flexibility and independency. These features are related to exchangeability of hardware targets and to the ability of choosing the target at a very late stage in the implementation process. Especially in the field of ultra high frequency radio frequency identification (UHF RFID) the model-based design approach leads to expected results. Beside a clear design process, which is applied in this work to build the required system architecture, the scope for UHF RFID simulations is defined and an extendable platform based on the MathWorks Matlab Simulinkreg is developed. This simulation platform, based on a multi-processor hardware target, using a Texas Instruments TMS320C6416 digital signal processor is able to run UHF RFID tag simulations of very high complexity. The highest effort is made to ensure flexibility to handle future simulation models on the same hardware target, realized by the continuous design and implementation flow of this platform based on model-based design\",\"PeriodicalId\":298961,\"journal\":{\"name\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2007.364410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing modern integrated and embedded systems require well-designed processes to ensure flexibility and independency. These features are related to exchangeability of hardware targets and to the ability of choosing the target at a very late stage in the implementation process. Especially in the field of ultra high frequency radio frequency identification (UHF RFID) the model-based design approach leads to expected results. Beside a clear design process, which is applied in this work to build the required system architecture, the scope for UHF RFID simulations is defined and an extendable platform based on the MathWorks Matlab Simulinkreg is developed. This simulation platform, based on a multi-processor hardware target, using a Texas Instruments TMS320C6416 digital signal processor is able to run UHF RFID tag simulations of very high complexity. The highest effort is made to ensure flexibility to handle future simulation models on the same hardware target, realized by the continuous design and implementation flow of this platform based on model-based design