自动生成神经网络拓扑预测国际一体化进程

L. Bilgaeva, E. Sadykova, V. Filippov
{"title":"自动生成神经网络拓扑预测国际一体化进程","authors":"L. Bilgaeva, E. Sadykova, V. Filippov","doi":"10.1109/FarEastCon.2019.8934135","DOIUrl":null,"url":null,"abstract":"The article is devoted to the automatic generation of neural network topology based on genetic algorithm to solve the problem of forecasting indicators of international integration processes. The paper proposes and implements a modification of the classic algorithm NEAT, consisting in the automatic selection of activation functions, which allowed to expand the set of possible solutions. The proposed method of predicting targets using the window method based on pre-predicted factor variables. This approach significantly increases the accuracy of forecasting.","PeriodicalId":395247,"journal":{"name":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Generation of Neural Network Topology to Forecast the International Integration Processes\",\"authors\":\"L. Bilgaeva, E. Sadykova, V. Filippov\",\"doi\":\"10.1109/FarEastCon.2019.8934135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to the automatic generation of neural network topology based on genetic algorithm to solve the problem of forecasting indicators of international integration processes. The paper proposes and implements a modification of the classic algorithm NEAT, consisting in the automatic selection of activation functions, which allowed to expand the set of possible solutions. The proposed method of predicting targets using the window method based on pre-predicted factor variables. This approach significantly increases the accuracy of forecasting.\",\"PeriodicalId\":395247,\"journal\":{\"name\":\"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FarEastCon.2019.8934135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FarEastCon.2019.8934135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了基于遗传算法的神经网络拓扑结构自动生成,以解决国际一体化进程指标预测问题。本文提出并实现了对经典算法NEAT的改进,包括激活函数的自动选择,从而扩大了可能解的集合。提出了基于预预测因子变量的窗口法预测目标的方法。这种方法显著提高了预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Generation of Neural Network Topology to Forecast the International Integration Processes
The article is devoted to the automatic generation of neural network topology based on genetic algorithm to solve the problem of forecasting indicators of international integration processes. The paper proposes and implements a modification of the classic algorithm NEAT, consisting in the automatic selection of activation functions, which allowed to expand the set of possible solutions. The proposed method of predicting targets using the window method based on pre-predicted factor variables. This approach significantly increases the accuracy of forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信