{"title":"利用对抗域自适应改进跨域半监督目标检测","authors":"Maximilian Menke, Thomas Wenzel, Andreas Schwung","doi":"10.1109/IV55152.2023.10186678","DOIUrl":null,"url":null,"abstract":"In autonomous driving, millions of frames with various scenarios for training deep object detectors is required. Labeling such a large number of frames is a costly process, therefore additional data sources support the training task. However, domain gaps from different cameras, weather, or locations typically limit the performance.We apply semi-supervised object detection, which leverages labeled source and pseudo-labeled target domain data in an iterative training paradigm. In addition, we newly include state-of-the-art adversarial style transfer into the semi-supervised training by stylizing images from source and target domains. This reduces the domain gap and improves pseudo-label quality in cross-domain semi-supervised training.In experiments and ablation studies, we show that our novel training framework can improve state-of-the-art detection performance by up to +10.1% on standard domain adaptation benchmarks.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Cross-Domain Semi-Supervised Object Detection with Adversarial Domain Adaptation\",\"authors\":\"Maximilian Menke, Thomas Wenzel, Andreas Schwung\",\"doi\":\"10.1109/IV55152.2023.10186678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In autonomous driving, millions of frames with various scenarios for training deep object detectors is required. Labeling such a large number of frames is a costly process, therefore additional data sources support the training task. However, domain gaps from different cameras, weather, or locations typically limit the performance.We apply semi-supervised object detection, which leverages labeled source and pseudo-labeled target domain data in an iterative training paradigm. In addition, we newly include state-of-the-art adversarial style transfer into the semi-supervised training by stylizing images from source and target domains. This reduces the domain gap and improves pseudo-label quality in cross-domain semi-supervised training.In experiments and ablation studies, we show that our novel training framework can improve state-of-the-art detection performance by up to +10.1% on standard domain adaptation benchmarks.\",\"PeriodicalId\":195148,\"journal\":{\"name\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV55152.2023.10186678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Cross-Domain Semi-Supervised Object Detection with Adversarial Domain Adaptation
In autonomous driving, millions of frames with various scenarios for training deep object detectors is required. Labeling such a large number of frames is a costly process, therefore additional data sources support the training task. However, domain gaps from different cameras, weather, or locations typically limit the performance.We apply semi-supervised object detection, which leverages labeled source and pseudo-labeled target domain data in an iterative training paradigm. In addition, we newly include state-of-the-art adversarial style transfer into the semi-supervised training by stylizing images from source and target domains. This reduces the domain gap and improves pseudo-label quality in cross-domain semi-supervised training.In experiments and ablation studies, we show that our novel training framework can improve state-of-the-art detection performance by up to +10.1% on standard domain adaptation benchmarks.