利用对抗域自适应改进跨域半监督目标检测

Maximilian Menke, Thomas Wenzel, Andreas Schwung
{"title":"利用对抗域自适应改进跨域半监督目标检测","authors":"Maximilian Menke, Thomas Wenzel, Andreas Schwung","doi":"10.1109/IV55152.2023.10186678","DOIUrl":null,"url":null,"abstract":"In autonomous driving, millions of frames with various scenarios for training deep object detectors is required. Labeling such a large number of frames is a costly process, therefore additional data sources support the training task. However, domain gaps from different cameras, weather, or locations typically limit the performance.We apply semi-supervised object detection, which leverages labeled source and pseudo-labeled target domain data in an iterative training paradigm. In addition, we newly include state-of-the-art adversarial style transfer into the semi-supervised training by stylizing images from source and target domains. This reduces the domain gap and improves pseudo-label quality in cross-domain semi-supervised training.In experiments and ablation studies, we show that our novel training framework can improve state-of-the-art detection performance by up to +10.1% on standard domain adaptation benchmarks.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Cross-Domain Semi-Supervised Object Detection with Adversarial Domain Adaptation\",\"authors\":\"Maximilian Menke, Thomas Wenzel, Andreas Schwung\",\"doi\":\"10.1109/IV55152.2023.10186678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In autonomous driving, millions of frames with various scenarios for training deep object detectors is required. Labeling such a large number of frames is a costly process, therefore additional data sources support the training task. However, domain gaps from different cameras, weather, or locations typically limit the performance.We apply semi-supervised object detection, which leverages labeled source and pseudo-labeled target domain data in an iterative training paradigm. In addition, we newly include state-of-the-art adversarial style transfer into the semi-supervised training by stylizing images from source and target domains. This reduces the domain gap and improves pseudo-label quality in cross-domain semi-supervised training.In experiments and ablation studies, we show that our novel training framework can improve state-of-the-art detection performance by up to +10.1% on standard domain adaptation benchmarks.\",\"PeriodicalId\":195148,\"journal\":{\"name\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV55152.2023.10186678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自动驾驶中,需要数百万帧具有各种场景的帧来训练深度目标检测器。标记如此大量的帧是一个昂贵的过程,因此额外的数据源支持训练任务。然而,来自不同摄像机、天气或位置的域间隙通常会限制性能。我们应用半监督目标检测,它在迭代训练范式中利用标记的源和伪标记的目标域数据。此外,我们通过对源域和目标域的图像进行风格化,将最先进的对抗性风格转移纳入半监督训练中。这减少了跨领域半监督训练中的领域差距,提高了伪标签质量。在实验和消融研究中,我们表明,我们的新训练框架可以在标准领域适应基准上将最先进的检测性能提高10.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Cross-Domain Semi-Supervised Object Detection with Adversarial Domain Adaptation
In autonomous driving, millions of frames with various scenarios for training deep object detectors is required. Labeling such a large number of frames is a costly process, therefore additional data sources support the training task. However, domain gaps from different cameras, weather, or locations typically limit the performance.We apply semi-supervised object detection, which leverages labeled source and pseudo-labeled target domain data in an iterative training paradigm. In addition, we newly include state-of-the-art adversarial style transfer into the semi-supervised training by stylizing images from source and target domains. This reduces the domain gap and improves pseudo-label quality in cross-domain semi-supervised training.In experiments and ablation studies, we show that our novel training framework can improve state-of-the-art detection performance by up to +10.1% on standard domain adaptation benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信