Qiujie Lu, Nicholas Baron, A. B. Clark, Nicolás Rojas
{"title":"RUTH Gripper:基于可重构欠驱动的系统对象不变握握在手操作","authors":"Qiujie Lu, Nicholas Baron, A. B. Clark, Nicolás Rojas","doi":"10.15607/rss.2020.xvi.093","DOIUrl":null,"url":null,"abstract":"We introduce a reconfigurable underactuated robot hand able to perform systematic prehensile in-hand manipulations regardless of object size or shape. The hand utilises a two-degree-of-freedom five-bar linkage as the palm of the gripper, with three three-phalanx underactuated fingers—jointly controlled by a single actuator—connected to the mobile revolute joints of the palm. Three actuators are used in the robot hand system, one for controlling the force exerted on objects by the fingers and two for changing the configuration of the palm. This novel layout allows decoupling grasping and manipulation, facilitating the planning and execution of in-hand manipulation operations. The reconfigurable palm provides the hand with large grasping versatility, and allows easy computation of a map between task space and joint space for manipulation based on distance-based linkage kinematics. The motion of objects of different sizes and shapes from one pose to another is then straightforward and systematic, provided the objects are kept grasped. This is guaranteed independently and passively by the underactuated fingers using a custom tendon routing method, which allows no tendon length variation when the relative finger base position changes with palm reconfigurations. We analyse the theoretical grasping workspace and manipulation capability of the hand, present algorithms for computing the manipulation map and in-hand manipulation planning, and evaluate all these experimentally. Numerical and empirical results of several manipulation trajectories with objects of different size and shape clearly demonstrate the viability of the proposed concept.","PeriodicalId":231005,"journal":{"name":"Robotics: Science and Systems XVI","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The RUTH Gripper: Systematic Object-Invariant Prehensile In-Hand Manipulation via Reconfigurable Underactuation\",\"authors\":\"Qiujie Lu, Nicholas Baron, A. B. Clark, Nicolás Rojas\",\"doi\":\"10.15607/rss.2020.xvi.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a reconfigurable underactuated robot hand able to perform systematic prehensile in-hand manipulations regardless of object size or shape. The hand utilises a two-degree-of-freedom five-bar linkage as the palm of the gripper, with three three-phalanx underactuated fingers—jointly controlled by a single actuator—connected to the mobile revolute joints of the palm. Three actuators are used in the robot hand system, one for controlling the force exerted on objects by the fingers and two for changing the configuration of the palm. This novel layout allows decoupling grasping and manipulation, facilitating the planning and execution of in-hand manipulation operations. The reconfigurable palm provides the hand with large grasping versatility, and allows easy computation of a map between task space and joint space for manipulation based on distance-based linkage kinematics. The motion of objects of different sizes and shapes from one pose to another is then straightforward and systematic, provided the objects are kept grasped. This is guaranteed independently and passively by the underactuated fingers using a custom tendon routing method, which allows no tendon length variation when the relative finger base position changes with palm reconfigurations. We analyse the theoretical grasping workspace and manipulation capability of the hand, present algorithms for computing the manipulation map and in-hand manipulation planning, and evaluate all these experimentally. Numerical and empirical results of several manipulation trajectories with objects of different size and shape clearly demonstrate the viability of the proposed concept.\",\"PeriodicalId\":231005,\"journal\":{\"name\":\"Robotics: Science and Systems XVI\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics: Science and Systems XVI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/rss.2020.xvi.093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2020.xvi.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The RUTH Gripper: Systematic Object-Invariant Prehensile In-Hand Manipulation via Reconfigurable Underactuation
We introduce a reconfigurable underactuated robot hand able to perform systematic prehensile in-hand manipulations regardless of object size or shape. The hand utilises a two-degree-of-freedom five-bar linkage as the palm of the gripper, with three three-phalanx underactuated fingers—jointly controlled by a single actuator—connected to the mobile revolute joints of the palm. Three actuators are used in the robot hand system, one for controlling the force exerted on objects by the fingers and two for changing the configuration of the palm. This novel layout allows decoupling grasping and manipulation, facilitating the planning and execution of in-hand manipulation operations. The reconfigurable palm provides the hand with large grasping versatility, and allows easy computation of a map between task space and joint space for manipulation based on distance-based linkage kinematics. The motion of objects of different sizes and shapes from one pose to another is then straightforward and systematic, provided the objects are kept grasped. This is guaranteed independently and passively by the underactuated fingers using a custom tendon routing method, which allows no tendon length variation when the relative finger base position changes with palm reconfigurations. We analyse the theoretical grasping workspace and manipulation capability of the hand, present algorithms for computing the manipulation map and in-hand manipulation planning, and evaluate all these experimentally. Numerical and empirical results of several manipulation trajectories with objects of different size and shape clearly demonstrate the viability of the proposed concept.