基于期望最大化的个性化行程推荐

C. Panagiotakis, Evangelia Daskalaki, H. Papadakis, P. Fragopoulou
{"title":"基于期望最大化的个性化行程推荐","authors":"C. Panagiotakis, Evangelia Daskalaki, H. Papadakis, P. Fragopoulou","doi":"10.1109/CSIT56902.2022.10000525","DOIUrl":null,"url":null,"abstract":"The personalized itinerary recommendation problem in selecting a subset of locations to visit from among a larger set while maximizing the benefit for the tourist. In this work, we propose an efficient deterministic method for the recommendation of personalized itineraries consisting of a sequence of Points of Interest (POIs) that maximizes the expected user satisfaction and adheres to user time constraints. Experimental results on a large number of synthetic and real-world datasets demonstrate the high performance of our framework.","PeriodicalId":282561,"journal":{"name":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Itinerary Recommendation via Expectation-Maximization\",\"authors\":\"C. Panagiotakis, Evangelia Daskalaki, H. Papadakis, P. Fragopoulou\",\"doi\":\"10.1109/CSIT56902.2022.10000525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The personalized itinerary recommendation problem in selecting a subset of locations to visit from among a larger set while maximizing the benefit for the tourist. In this work, we propose an efficient deterministic method for the recommendation of personalized itineraries consisting of a sequence of Points of Interest (POIs) that maximizes the expected user satisfaction and adheres to user time constraints. Experimental results on a large number of synthetic and real-world datasets demonstrate the high performance of our framework.\",\"PeriodicalId\":282561,\"journal\":{\"name\":\"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSIT56902.2022.10000525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIT56902.2022.10000525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

个性化的行程推荐问题,从一个更大的集合中选择一个子集来访问,同时使游客的利益最大化。在这项工作中,我们提出了一种高效的确定性方法,用于推荐由一系列兴趣点(poi)组成的个性化行程,以最大化预期用户满意度并遵守用户时间限制。在大量合成数据集和实际数据集上的实验结果证明了该框架的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized Itinerary Recommendation via Expectation-Maximization
The personalized itinerary recommendation problem in selecting a subset of locations to visit from among a larger set while maximizing the benefit for the tourist. In this work, we propose an efficient deterministic method for the recommendation of personalized itineraries consisting of a sequence of Points of Interest (POIs) that maximizes the expected user satisfaction and adheres to user time constraints. Experimental results on a large number of synthetic and real-world datasets demonstrate the high performance of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信