{"title":"俄克拉何马州和堪萨斯州大地震前的基底断层活动","authors":"Yongsook Park, G. Beroza, W. Ellsworth","doi":"10.1785/0320220020","DOIUrl":null,"url":null,"abstract":"\n Oklahoma and Kansas experienced unprecedented seismic activity over the past decade due to earthquakes associated with unconventional hydrocarbon development. The modest natural seismicity and incomplete knowledge of the fault network in the region made it difficult to anticipate the locations of earthquakes with larger magnitudes (Mw≥4). Here, we show that monitoring of microearthquakes at regional scale using a pretrained neural phase picker and an earthquake relocation algorithm can illuminate unknown fault structures, and deliver information that can be synthesized for earthquake forecasting. We found that 80% of the larger earthquakes that occurred in the past decade could have been anticipated based on the spatial extent of the seismicity clusters that were formed before these earthquakes occurred. We also found that once a seismicity cluster with a length scale enough to host a larger earthquake was formed, there was a ∼5% chance that it would host one or more larger earthquakes within a year. This probability is nearly an order of magnitude higher than one based on Gutenberg–Richter statistics and preceding seismicity. Applying our approach in practice can provide critical information on seismic hazards for risk management and regulatory decision making.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Basement Fault Activation before Larger Earthquakes in Oklahoma and Kansas\",\"authors\":\"Yongsook Park, G. Beroza, W. Ellsworth\",\"doi\":\"10.1785/0320220020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Oklahoma and Kansas experienced unprecedented seismic activity over the past decade due to earthquakes associated with unconventional hydrocarbon development. The modest natural seismicity and incomplete knowledge of the fault network in the region made it difficult to anticipate the locations of earthquakes with larger magnitudes (Mw≥4). Here, we show that monitoring of microearthquakes at regional scale using a pretrained neural phase picker and an earthquake relocation algorithm can illuminate unknown fault structures, and deliver information that can be synthesized for earthquake forecasting. We found that 80% of the larger earthquakes that occurred in the past decade could have been anticipated based on the spatial extent of the seismicity clusters that were formed before these earthquakes occurred. We also found that once a seismicity cluster with a length scale enough to host a larger earthquake was formed, there was a ∼5% chance that it would host one or more larger earthquakes within a year. This probability is nearly an order of magnitude higher than one based on Gutenberg–Richter statistics and preceding seismicity. Applying our approach in practice can provide critical information on seismic hazards for risk management and regulatory decision making.\",\"PeriodicalId\":273018,\"journal\":{\"name\":\"The Seismic Record\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seismic Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0320220020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seismic Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0320220020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Basement Fault Activation before Larger Earthquakes in Oklahoma and Kansas
Oklahoma and Kansas experienced unprecedented seismic activity over the past decade due to earthquakes associated with unconventional hydrocarbon development. The modest natural seismicity and incomplete knowledge of the fault network in the region made it difficult to anticipate the locations of earthquakes with larger magnitudes (Mw≥4). Here, we show that monitoring of microearthquakes at regional scale using a pretrained neural phase picker and an earthquake relocation algorithm can illuminate unknown fault structures, and deliver information that can be synthesized for earthquake forecasting. We found that 80% of the larger earthquakes that occurred in the past decade could have been anticipated based on the spatial extent of the seismicity clusters that were formed before these earthquakes occurred. We also found that once a seismicity cluster with a length scale enough to host a larger earthquake was formed, there was a ∼5% chance that it would host one or more larger earthquakes within a year. This probability is nearly an order of magnitude higher than one based on Gutenberg–Richter statistics and preceding seismicity. Applying our approach in practice can provide critical information on seismic hazards for risk management and regulatory decision making.