基于绝缘体-金属过渡材料的人工神经元:设计视角

A. Aziz, K. Roy
{"title":"基于绝缘体-金属过渡材料的人工神经元:设计视角","authors":"A. Aziz, K. Roy","doi":"10.1109/ISQED48828.2020.9136994","DOIUrl":null,"url":null,"abstract":"We analyze the dynamics of insulator-metal transition (IMT) based neurons, through material-device co-design and optimization. We explore the correlation between the membrane potential and the bias voltage for the resistance stack of the IMT neuron. For a set of nominal parameters, we show that a minimum bias voltage of ~300 mV and a minimum gate input of ~400 mV is required to ensure oscillatory behavior in the IMT neuron. These biasing constraints can be slightly relaxed by increasing the size of the auxiliary transistor. A 4X increase in the transistor width can only lead to ~ 80 mV increase in the window of oscillatory operation with a ~3.8X increase in the current through the neuron. For low power operation, it is optimum to use minimum sized transistor with more than 400 mV of membrane and bias voltages. Analyzing the implications of the material parameters, we report that, the trigger voltage $(V_{TRIG})$ of the neuron can be linearly tuned by choosing appropriate critical voltage for IMT switching. The insulating state resistance $(R_{INS})$ also plays a role in determining the $V_{TRIG}$. But, to reduce the $V_{TRIG}$ by 50 mV, the $R_{INS}$ needs to be lowered by ~5X. For $R_{INS} < 150\\mathrm{K}\\Omega$ and metallic state resistance $(RMET) < 700\\Omega$, it is possible to operate the neuron in a special bi-stable oscillatory mode (avoiding the metastable operation). But if the width of transistor is lower $(N_{FIN} < 4)$, only metastable oscillation is possible. The frequency of oscillation is coupled to the transistor resistance and ~25 mV reduction in threshold voltage $(V_{TH})$ leads to $> 15\\%$ increase in the frequency. We perform 10,000 Monte-Carlo simulations $(3\\sigma)$ to analyze the effect of variation on this neuron topology. Considering Gaussian distribution in the $V_{TH}$ and in all the parameters of the IMT material, we calculate ~150 mV of spread in the values of the $V_{TRIG}$ The variation induced spread is not sensitive to the transistor size. That indicates the possibility of using a minimum sized transistor, without affecting the degree of variation tolerance of the neuron.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Insulator-Metal Transition Material Based Artificial Neurons: A Design Perspective\",\"authors\":\"A. Aziz, K. Roy\",\"doi\":\"10.1109/ISQED48828.2020.9136994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the dynamics of insulator-metal transition (IMT) based neurons, through material-device co-design and optimization. We explore the correlation between the membrane potential and the bias voltage for the resistance stack of the IMT neuron. For a set of nominal parameters, we show that a minimum bias voltage of ~300 mV and a minimum gate input of ~400 mV is required to ensure oscillatory behavior in the IMT neuron. These biasing constraints can be slightly relaxed by increasing the size of the auxiliary transistor. A 4X increase in the transistor width can only lead to ~ 80 mV increase in the window of oscillatory operation with a ~3.8X increase in the current through the neuron. For low power operation, it is optimum to use minimum sized transistor with more than 400 mV of membrane and bias voltages. Analyzing the implications of the material parameters, we report that, the trigger voltage $(V_{TRIG})$ of the neuron can be linearly tuned by choosing appropriate critical voltage for IMT switching. The insulating state resistance $(R_{INS})$ also plays a role in determining the $V_{TRIG}$. But, to reduce the $V_{TRIG}$ by 50 mV, the $R_{INS}$ needs to be lowered by ~5X. For $R_{INS} < 150\\\\mathrm{K}\\\\Omega$ and metallic state resistance $(RMET) < 700\\\\Omega$, it is possible to operate the neuron in a special bi-stable oscillatory mode (avoiding the metastable operation). But if the width of transistor is lower $(N_{FIN} < 4)$, only metastable oscillation is possible. The frequency of oscillation is coupled to the transistor resistance and ~25 mV reduction in threshold voltage $(V_{TH})$ leads to $> 15\\\\%$ increase in the frequency. We perform 10,000 Monte-Carlo simulations $(3\\\\sigma)$ to analyze the effect of variation on this neuron topology. Considering Gaussian distribution in the $V_{TH}$ and in all the parameters of the IMT material, we calculate ~150 mV of spread in the values of the $V_{TRIG}$ The variation induced spread is not sensitive to the transistor size. That indicates the possibility of using a minimum sized transistor, without affecting the degree of variation tolerance of the neuron.\",\"PeriodicalId\":225828,\"journal\":{\"name\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED48828.2020.9136994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9136994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过材料-器件协同设计和优化,我们分析了基于绝缘体-金属过渡(IMT)的神经元的动力学。我们探索了IMT神经元电阻堆叠的膜电位与偏置电压之间的关系。对于一组标称参数,我们表明,最小偏置电压为300 mV,最小栅极输入为400 mV,以确保IMT神经元的振荡行为。这些偏置限制可以通过增加辅助晶体管的尺寸来稍微放松。晶体管宽度增加4倍只能导致振荡操作窗口增加80 mV,而通过神经元的电流增加3.8倍。对于低功率工作,最理想的是使用最小尺寸的晶体管,膜和偏置电压大于400mv。分析了材料参数的影响,我们报道,神经元的触发电压$(V_{TRIG})$可以通过选择适当的临界电压进行IMT开关线性调谐。绝缘状态电阻$(R_{INS})$也对$V_{TRIG}$起决定作用。但是,为了将$V_{TRIG}$降低50 mV, $R_{INS}$需要降低5倍。对于$R_{INS} < 150\mathrm{K}\Omega$和金属态电阻$(RMET) < 700\Omega$,可以在特殊的双稳态振荡模式下操作神经元(避免亚稳态操作)。但如果晶体管的宽度较低$(N_{FIN} < 4)$,则只能产生亚稳态振荡。振荡频率与晶体管电阻耦合,阈值电压降低25 mV $(V_{TH})$导致频率增加$> 15\%$。我们进行了10,000次蒙特卡罗模拟$(3\sigma)$来分析变化对该神经元拓扑的影响。考虑到在$V_{TH}$和IMT材料的所有参数中的高斯分布,我们在$V_{TRIG}$的值中计算了150 mV的扩展,引起扩展的变化对晶体管尺寸不敏感。这表明了在不影响神经元变化容忍度的情况下,使用最小尺寸晶体管的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insulator-Metal Transition Material Based Artificial Neurons: A Design Perspective
We analyze the dynamics of insulator-metal transition (IMT) based neurons, through material-device co-design and optimization. We explore the correlation between the membrane potential and the bias voltage for the resistance stack of the IMT neuron. For a set of nominal parameters, we show that a minimum bias voltage of ~300 mV and a minimum gate input of ~400 mV is required to ensure oscillatory behavior in the IMT neuron. These biasing constraints can be slightly relaxed by increasing the size of the auxiliary transistor. A 4X increase in the transistor width can only lead to ~ 80 mV increase in the window of oscillatory operation with a ~3.8X increase in the current through the neuron. For low power operation, it is optimum to use minimum sized transistor with more than 400 mV of membrane and bias voltages. Analyzing the implications of the material parameters, we report that, the trigger voltage $(V_{TRIG})$ of the neuron can be linearly tuned by choosing appropriate critical voltage for IMT switching. The insulating state resistance $(R_{INS})$ also plays a role in determining the $V_{TRIG}$. But, to reduce the $V_{TRIG}$ by 50 mV, the $R_{INS}$ needs to be lowered by ~5X. For $R_{INS} < 150\mathrm{K}\Omega$ and metallic state resistance $(RMET) < 700\Omega$, it is possible to operate the neuron in a special bi-stable oscillatory mode (avoiding the metastable operation). But if the width of transistor is lower $(N_{FIN} < 4)$, only metastable oscillation is possible. The frequency of oscillation is coupled to the transistor resistance and ~25 mV reduction in threshold voltage $(V_{TH})$ leads to $> 15\%$ increase in the frequency. We perform 10,000 Monte-Carlo simulations $(3\sigma)$ to analyze the effect of variation on this neuron topology. Considering Gaussian distribution in the $V_{TH}$ and in all the parameters of the IMT material, we calculate ~150 mV of spread in the values of the $V_{TRIG}$ The variation induced spread is not sensitive to the transistor size. That indicates the possibility of using a minimum sized transistor, without affecting the degree of variation tolerance of the neuron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信