基于12 nm 0.62-1.61 mW超低功耗数字cim的端到端始终在线视觉深度学习系统

En-Jui Chang, Cheng-Xin Xue, Chetan Deshpande, Gajanan Jedhe, Jenwei Liang, Chih-Chung Cheng, Hung-Wei Lin, Chia-Da Lee, Sushil Kumar, Kim Soon Jway, Zijie Guo, Ritesh Garg, Allen-CL Lu, Chien-Hung Lin, Meng-Han Hsieh, Tsung-Yao Lin, Chih-Cheng Chen
{"title":"基于12 nm 0.62-1.61 mW超低功耗数字cim的端到端始终在线视觉深度学习系统","authors":"En-Jui Chang, Cheng-Xin Xue, Chetan Deshpande, Gajanan Jedhe, Jenwei Liang, Chih-Chung Cheng, Hung-Wei Lin, Chia-Da Lee, Sushil Kumar, Kim Soon Jway, Zijie Guo, Ritesh Garg, Allen-CL Lu, Chien-Hung Lin, Meng-Han Hsieh, Tsung-Yao Lin, Chih-Cheng Chen","doi":"10.23919/VLSITechnologyandCir57934.2023.10185296","DOIUrl":null,"url":null,"abstract":"This work proposes an ultra-low power DCIM-based DL system (DCIM-DLS) for end-to-end AoV with the power range from 0.62 to 1.61 mW (INT8, 2-15 fps). Compared to the prior art [3], the power consumption of DCIM-DLS can be reduced by 70.9% based on the following techniques: 1) an area and energy efficient DCIM that reduces compute RC loading by using pushed-rule 2p8T SRAM bitcell with folded kernels selector, 2) a DCIM-friendly dataflow strategy with dual accumulators that minimizes the DCIM power of weight update and avoids redundant data movement for power saving, and 3) a reconfigurable DCIM control scheme that supports mixed-precision to further reduce power consumption.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 12-nm 0.62-1.61 mW Ultra-Low Power Digital CIM-based Deep-Learning System for End-to-End Always-on Vision\",\"authors\":\"En-Jui Chang, Cheng-Xin Xue, Chetan Deshpande, Gajanan Jedhe, Jenwei Liang, Chih-Chung Cheng, Hung-Wei Lin, Chia-Da Lee, Sushil Kumar, Kim Soon Jway, Zijie Guo, Ritesh Garg, Allen-CL Lu, Chien-Hung Lin, Meng-Han Hsieh, Tsung-Yao Lin, Chih-Cheng Chen\",\"doi\":\"10.23919/VLSITechnologyandCir57934.2023.10185296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes an ultra-low power DCIM-based DL system (DCIM-DLS) for end-to-end AoV with the power range from 0.62 to 1.61 mW (INT8, 2-15 fps). Compared to the prior art [3], the power consumption of DCIM-DLS can be reduced by 70.9% based on the following techniques: 1) an area and energy efficient DCIM that reduces compute RC loading by using pushed-rule 2p8T SRAM bitcell with folded kernels selector, 2) a DCIM-friendly dataflow strategy with dual accumulators that minimizes the DCIM power of weight update and avoids redundant data movement for power saving, and 3) a reconfigurable DCIM control scheme that supports mixed-precision to further reduce power consumption.\",\"PeriodicalId\":317958,\"journal\":{\"name\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种超低功耗基于dcim的端到端AoV DL系统(DCIM-DLS),功率范围为0.62至1.61 mW (INT8, 2-15 fps)。与现有技术[3]相比,采用以下技术可使DCIM-DLS的功耗降低70.9%:1)一种面积和能源效率高的DCIM,通过使用带折叠核选择器的push -rule 2p8T SRAM位单元来减少计算RC负载;2)一种DCIM友好的数据流策略,采用双累加器,最大限度地减少DCIM的权重更新功率,避免冗余数据移动以节省电力;3)一种支持混合精度的可重构DCIM控制方案,以进一步降低功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 12-nm 0.62-1.61 mW Ultra-Low Power Digital CIM-based Deep-Learning System for End-to-End Always-on Vision
This work proposes an ultra-low power DCIM-based DL system (DCIM-DLS) for end-to-end AoV with the power range from 0.62 to 1.61 mW (INT8, 2-15 fps). Compared to the prior art [3], the power consumption of DCIM-DLS can be reduced by 70.9% based on the following techniques: 1) an area and energy efficient DCIM that reduces compute RC loading by using pushed-rule 2p8T SRAM bitcell with folded kernels selector, 2) a DCIM-friendly dataflow strategy with dual accumulators that minimizes the DCIM power of weight update and avoids redundant data movement for power saving, and 3) a reconfigurable DCIM control scheme that supports mixed-precision to further reduce power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信