集成多个ROS2 FPGA节点的基于ROS2的自主微型机器人汽车设计与实现

Hayato Mori, Hayato Amano, Akinobu Mizutani, Eisuke Okazaki, Yuki Konno, Kohei Sada, Tomohiro Ono, Yuma Yoshimoto, H. Tamukoh, Takeshi Ohkawa, Midori Sugaya
{"title":"集成多个ROS2 FPGA节点的基于ROS2的自主微型机器人汽车设计与实现","authors":"Hayato Mori, Hayato Amano, Akinobu Mizutani, Eisuke Okazaki, Yuki Konno, Kohei Sada, Tomohiro Ono, Yuma Yoshimoto, H. Tamukoh, Takeshi Ohkawa, Midori Sugaya","doi":"10.1109/ICFPT56656.2022.9974433","DOIUrl":null,"url":null,"abstract":"This paper introduces an autonomous tiny robot car equipped with a camera-based lane detection function and a traffic signal/obstacle, pedestrian recognition function. Each function is integrated by Robot Operating System 2 (ROS2), a middleware for robot system development. Autonomous driving without the need for a driver requires not only lane-following driving but also traffic signal recognition and obstacle recognition. These functions are implemented on FPGA, and we evaluated them. According to these results, the execution time of traffic signal recognition by FPGA was 1.2 to 3.4 times faster than CPU execution. YOLOv4 is used for obstacle recognition, which improved mAP by 3.79 points compared to YOLO v3-Tiny.","PeriodicalId":239314,"journal":{"name":"2022 International Conference on Field-Programmable Technology (ICFPT)","volume":"83 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desgin and Implementation of ROS2-based Autonomous Tiny Robot Car with Integration of Multiple ROS2 FPGA Nodes\",\"authors\":\"Hayato Mori, Hayato Amano, Akinobu Mizutani, Eisuke Okazaki, Yuki Konno, Kohei Sada, Tomohiro Ono, Yuma Yoshimoto, H. Tamukoh, Takeshi Ohkawa, Midori Sugaya\",\"doi\":\"10.1109/ICFPT56656.2022.9974433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an autonomous tiny robot car equipped with a camera-based lane detection function and a traffic signal/obstacle, pedestrian recognition function. Each function is integrated by Robot Operating System 2 (ROS2), a middleware for robot system development. Autonomous driving without the need for a driver requires not only lane-following driving but also traffic signal recognition and obstacle recognition. These functions are implemented on FPGA, and we evaluated them. According to these results, the execution time of traffic signal recognition by FPGA was 1.2 to 3.4 times faster than CPU execution. YOLOv4 is used for obstacle recognition, which improved mAP by 3.79 points compared to YOLO v3-Tiny.\",\"PeriodicalId\":239314,\"journal\":{\"name\":\"2022 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"83 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT56656.2022.9974433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT56656.2022.9974433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种具有基于摄像头的车道检测功能和交通信号/障碍物、行人识别功能的自主微型机器人汽车。机器人操作系统2 (Robot Operating System 2, ROS2)是机器人系统开发的中间件。不需要驾驶员的自动驾驶不仅需要车道跟随驾驶,还需要交通信号识别和障碍物识别。在FPGA上实现了这些功能,并对其进行了评估。根据这些结果,FPGA的交通信号识别执行时间比CPU的执行时间快1.2 ~ 3.4倍。使用YOLOv4进行障碍物识别,与YOLOv4 - tiny相比,mAP提高了3.79分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Desgin and Implementation of ROS2-based Autonomous Tiny Robot Car with Integration of Multiple ROS2 FPGA Nodes
This paper introduces an autonomous tiny robot car equipped with a camera-based lane detection function and a traffic signal/obstacle, pedestrian recognition function. Each function is integrated by Robot Operating System 2 (ROS2), a middleware for robot system development. Autonomous driving without the need for a driver requires not only lane-following driving but also traffic signal recognition and obstacle recognition. These functions are implemented on FPGA, and we evaluated them. According to these results, the execution time of traffic signal recognition by FPGA was 1.2 to 3.4 times faster than CPU execution. YOLOv4 is used for obstacle recognition, which improved mAP by 3.79 points compared to YOLO v3-Tiny.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信