利用系数P.D.F.级数展开的厄米特多项式的小波域图像去噪算法

S. Rahman, M. Ahmad, M. Swamy
{"title":"利用系数P.D.F.级数展开的厄米特多项式的小波域图像去噪算法","authors":"S. Rahman, M. Ahmad, M. Swamy","doi":"10.1109/NEWCAS.2005.1496680","DOIUrl":null,"url":null,"abstract":"A new wavelet-domain image denoising algorithm is proposed that uses series expansion of continuous probability density function (pdf) for estimating wavelet coefficient variance field. The expanded pdf is derived using standard normal as weighting function that results the Hermite polynomials in the series. Variance field estimated using the proposed algorithm is used in a minimum mean square error (MMSE) estimator to restore the noisy image wavelet coefficients. Simulation results on standard images show improved performance both in visual quality and in terms of peak signal to noise ratio (PSNR) as compared to other recent image denoising methods.","PeriodicalId":131387,"journal":{"name":"The 3rd International IEEE-NEWCAS Conference, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Wavelet-domain image denoising algorithm using series expansion of coefficient P.D.F. in terms of Hermite polynomials\",\"authors\":\"S. Rahman, M. Ahmad, M. Swamy\",\"doi\":\"10.1109/NEWCAS.2005.1496680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new wavelet-domain image denoising algorithm is proposed that uses series expansion of continuous probability density function (pdf) for estimating wavelet coefficient variance field. The expanded pdf is derived using standard normal as weighting function that results the Hermite polynomials in the series. Variance field estimated using the proposed algorithm is used in a minimum mean square error (MMSE) estimator to restore the noisy image wavelet coefficients. Simulation results on standard images show improved performance both in visual quality and in terms of peak signal to noise ratio (PSNR) as compared to other recent image denoising methods.\",\"PeriodicalId\":131387,\"journal\":{\"name\":\"The 3rd International IEEE-NEWCAS Conference, 2005.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd International IEEE-NEWCAS Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2005.1496680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International IEEE-NEWCAS Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2005.1496680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的小波域图像去噪算法,利用连续概率密度函数(pdf)的级数展开估计小波系数方差场。扩展后的pdf是使用标准正态法作为加权函数导出的,该函数可得到该级数中的埃尔米特多项式。将该算法估计的方差场用于最小均方误差(MMSE)估计器中,以恢复噪声图像的小波系数。在标准图像上的仿真结果表明,与其他最新的图像去噪方法相比,该方法在视觉质量和峰值信噪比(PSNR)方面都有改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-domain image denoising algorithm using series expansion of coefficient P.D.F. in terms of Hermite polynomials
A new wavelet-domain image denoising algorithm is proposed that uses series expansion of continuous probability density function (pdf) for estimating wavelet coefficient variance field. The expanded pdf is derived using standard normal as weighting function that results the Hermite polynomials in the series. Variance field estimated using the proposed algorithm is used in a minimum mean square error (MMSE) estimator to restore the noisy image wavelet coefficients. Simulation results on standard images show improved performance both in visual quality and in terms of peak signal to noise ratio (PSNR) as compared to other recent image denoising methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信