用于发光二极管和半导体激光器的InGaN技术进展

S. Rudaz, R. Fletcher
{"title":"用于发光二极管和半导体激光器的InGaN技术进展","authors":"S. Rudaz, R. Fletcher","doi":"10.1109/HTEMDS.1998.730679","DOIUrl":null,"url":null,"abstract":"The past ten years have seen a virtual revolution for the optoelectronics industry dealing with LEDs. With the development of new III-V materials, such as AlGaAs, AlInGaP, and InGaN, and epitaxial structures capable of very efficient visible light generation, a vast new field of applications for LEDs has opened. The most recent development has been the introduction of bright blue and green LEDs based on InGaN. This now makes coverage of the entire color spectrum possible, from red to violet at brightness and efficiency levels exceeding conventional filament light sources. Full-color large screen video displays with excellent color rendition and brightness and even white light LEDs are being produced. Semiconductor lasers have also benefitted from progress with InGaN technology, and have been demonstrated with emission wavelengths around 400 nm. The primary importance of these devices is in the area of CD data storage, where the short wavelength increases storage density by approximately a factor of four over current systems using a red AlInGaP or infrared AlGaAs laser. Despite these advances, we have barely begun to see the possibilities for LEDs. Continuing improvements in materials and device efficiency and light extraction techniques are set to raise performance limits by at least a factor of two for InGaN and AlInGaP devices over the next few years. This presentation focuses on the advances that have been achieved with InGaN materials technology and the types of devices that have been created. Current applications and possible future use for high performance blue LEDs and lasers are also discussed.","PeriodicalId":197749,"journal":{"name":"1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in InGaN technology for light-emitting diodes and semiconductor lasers\",\"authors\":\"S. Rudaz, R. Fletcher\",\"doi\":\"10.1109/HTEMDS.1998.730679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past ten years have seen a virtual revolution for the optoelectronics industry dealing with LEDs. With the development of new III-V materials, such as AlGaAs, AlInGaP, and InGaN, and epitaxial structures capable of very efficient visible light generation, a vast new field of applications for LEDs has opened. The most recent development has been the introduction of bright blue and green LEDs based on InGaN. This now makes coverage of the entire color spectrum possible, from red to violet at brightness and efficiency levels exceeding conventional filament light sources. Full-color large screen video displays with excellent color rendition and brightness and even white light LEDs are being produced. Semiconductor lasers have also benefitted from progress with InGaN technology, and have been demonstrated with emission wavelengths around 400 nm. The primary importance of these devices is in the area of CD data storage, where the short wavelength increases storage density by approximately a factor of four over current systems using a red AlInGaP or infrared AlGaAs laser. Despite these advances, we have barely begun to see the possibilities for LEDs. Continuing improvements in materials and device efficiency and light extraction techniques are set to raise performance limits by at least a factor of two for InGaN and AlInGaP devices over the next few years. This presentation focuses on the advances that have been achieved with InGaN materials technology and the types of devices that have been created. Current applications and possible future use for high performance blue LEDs and lasers are also discussed.\",\"PeriodicalId\":197749,\"journal\":{\"name\":\"1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HTEMDS.1998.730679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HTEMDS.1998.730679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,光电子工业在处理led方面发生了一场实质上的革命。随着新型III-V材料的发展,如AlGaAs, AlInGaP和InGaN,以及能够非常高效地产生可见光的外延结构,为led开辟了广阔的新应用领域。最近的发展是基于InGaN的明亮蓝色和绿色led的引入。这使得覆盖整个光谱成为可能,从红色到紫色的亮度和效率水平超过传统的灯丝光源。具有出色的色彩再现性和亮度的全彩大屏幕视频显示器,甚至白光led正在生产。半导体激光器也受益于InGaN技术的进步,并且已经证明其发射波长约为400nm。这些器件的主要重要性在于CD数据存储领域,其中短波长的存储密度比使用红色AlInGaP或红外AlGaAs激光器的电流系统增加了大约四倍。尽管取得了这些进步,我们才刚刚开始看到led的可能性。材料和器件效率以及光提取技术的持续改进将在未来几年内将InGaN和AlInGaP器件的性能限制提高至少两倍。本演讲重点介绍了InGaN材料技术取得的进步以及已经创建的设备类型。高性能蓝光led和激光器的当前应用和可能的未来用途也进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in InGaN technology for light-emitting diodes and semiconductor lasers
The past ten years have seen a virtual revolution for the optoelectronics industry dealing with LEDs. With the development of new III-V materials, such as AlGaAs, AlInGaP, and InGaN, and epitaxial structures capable of very efficient visible light generation, a vast new field of applications for LEDs has opened. The most recent development has been the introduction of bright blue and green LEDs based on InGaN. This now makes coverage of the entire color spectrum possible, from red to violet at brightness and efficiency levels exceeding conventional filament light sources. Full-color large screen video displays with excellent color rendition and brightness and even white light LEDs are being produced. Semiconductor lasers have also benefitted from progress with InGaN technology, and have been demonstrated with emission wavelengths around 400 nm. The primary importance of these devices is in the area of CD data storage, where the short wavelength increases storage density by approximately a factor of four over current systems using a red AlInGaP or infrared AlGaAs laser. Despite these advances, we have barely begun to see the possibilities for LEDs. Continuing improvements in materials and device efficiency and light extraction techniques are set to raise performance limits by at least a factor of two for InGaN and AlInGaP devices over the next few years. This presentation focuses on the advances that have been achieved with InGaN materials technology and the types of devices that have been created. Current applications and possible future use for high performance blue LEDs and lasers are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信