{"title":"铁和铪共掺杂ni3n纳米结构作为碱性水氧化的活性催化剂","authors":"Wanru Feng","doi":"10.54026/aroic/1014","DOIUrl":null,"url":null,"abstract":"The exploration of highly efficient electrocatalysts is critical to the oxygen evolution reaction (OER). Here, we synthesized iron and hafnium co-doped Ni3 N (Fe, Hf-Ni3 N) nanostructure and grew on nickel foam substrate to fabricate a threedimensional (3D) electrode. The Fe, Hf-Ni3 N catalyst exhibits an excellent OER performance with a small overpotential of only 198 mV at 10 mA cm-2 and a lower Tafel slope of 89 mV dec-1 in basic electrolyte. This may be due to the fact that the doping of Fe and Hf modulate the electronic interactions of Ni3 N, thus increasing the OER activity. In addition, the Fe, HfNi3 N shows a considerable electrochemical stability, which has not weakened after 105 h operation. This work provides a useful approach for improve the OER performance of catalysts in the future.","PeriodicalId":193352,"journal":{"name":"Advance Research in Organic and Inorganic Chemistry (AROIC)","volume":"80 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron and Hafnium Co-Doped Ni3 N Nanostructures as An Active Catalyst for Alkaline Water Oxidation\",\"authors\":\"Wanru Feng\",\"doi\":\"10.54026/aroic/1014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of highly efficient electrocatalysts is critical to the oxygen evolution reaction (OER). Here, we synthesized iron and hafnium co-doped Ni3 N (Fe, Hf-Ni3 N) nanostructure and grew on nickel foam substrate to fabricate a threedimensional (3D) electrode. The Fe, Hf-Ni3 N catalyst exhibits an excellent OER performance with a small overpotential of only 198 mV at 10 mA cm-2 and a lower Tafel slope of 89 mV dec-1 in basic electrolyte. This may be due to the fact that the doping of Fe and Hf modulate the electronic interactions of Ni3 N, thus increasing the OER activity. In addition, the Fe, HfNi3 N shows a considerable electrochemical stability, which has not weakened after 105 h operation. This work provides a useful approach for improve the OER performance of catalysts in the future.\",\"PeriodicalId\":193352,\"journal\":{\"name\":\"Advance Research in Organic and Inorganic Chemistry (AROIC)\",\"volume\":\"80 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advance Research in Organic and Inorganic Chemistry (AROIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54026/aroic/1014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advance Research in Organic and Inorganic Chemistry (AROIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54026/aroic/1014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iron and Hafnium Co-Doped Ni3 N Nanostructures as An Active Catalyst for Alkaline Water Oxidation
The exploration of highly efficient electrocatalysts is critical to the oxygen evolution reaction (OER). Here, we synthesized iron and hafnium co-doped Ni3 N (Fe, Hf-Ni3 N) nanostructure and grew on nickel foam substrate to fabricate a threedimensional (3D) electrode. The Fe, Hf-Ni3 N catalyst exhibits an excellent OER performance with a small overpotential of only 198 mV at 10 mA cm-2 and a lower Tafel slope of 89 mV dec-1 in basic electrolyte. This may be due to the fact that the doping of Fe and Hf modulate the electronic interactions of Ni3 N, thus increasing the OER activity. In addition, the Fe, HfNi3 N shows a considerable electrochemical stability, which has not weakened after 105 h operation. This work provides a useful approach for improve the OER performance of catalysts in the future.