大规模fpga的高清晰度路由拥塞预测

M. Alawieh, Wuxi Li, Yibo Lin, L. Singhal, M. Iyer, D. Pan
{"title":"大规模fpga的高清晰度路由拥塞预测","authors":"M. Alawieh, Wuxi Li, Yibo Lin, L. Singhal, M. Iyer, D. Pan","doi":"10.1109/ASP-DAC47756.2020.9045178","DOIUrl":null,"url":null,"abstract":"To speed up the FPGA placement and routing closure, we propose a novel approach to predict the routing congestion map for large-scale FPGA designs at the placement stage. After reformulating the problem into an image translation task, our proposed approach leverages recent advancement in generative adversarial learning to address the task. Particularly, state-of-the-art generative adversarial networks for high-resolution image translation are used along with well-engineered features extracted from the placement stage. Unlike available approaches, our novel framework demonstrates a capability of handling large-scale FPGA designs. With its superior accuracy, our proposed approach can be incorporated into the placement engine to provide congestion prediction resulting in up to 7% reduction in routed wirelength for the most congested design in ISPD 2016 benchmark.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"High-Definition Routing Congestion Prediction for Large-Scale FPGAs\",\"authors\":\"M. Alawieh, Wuxi Li, Yibo Lin, L. Singhal, M. Iyer, D. Pan\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To speed up the FPGA placement and routing closure, we propose a novel approach to predict the routing congestion map for large-scale FPGA designs at the placement stage. After reformulating the problem into an image translation task, our proposed approach leverages recent advancement in generative adversarial learning to address the task. Particularly, state-of-the-art generative adversarial networks for high-resolution image translation are used along with well-engineered features extracted from the placement stage. Unlike available approaches, our novel framework demonstrates a capability of handling large-scale FPGA designs. With its superior accuracy, our proposed approach can be incorporated into the placement engine to provide congestion prediction resulting in up to 7% reduction in routed wirelength for the most congested design in ISPD 2016 benchmark.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

为了加快FPGA布局和路由关闭的速度,我们提出了一种在布局阶段预测大规模FPGA设计路由拥塞映射的新方法。在将问题重新表述为图像翻译任务后,我们提出的方法利用生成对抗学习的最新进展来解决该任务。特别是,用于高分辨率图像翻译的最先进的生成对抗网络与从放置阶段提取的精心设计的特征一起使用。与现有的方法不同,我们的新框架展示了处理大规模FPGA设计的能力。凭借其卓越的准确性,我们提出的方法可以整合到放置引擎中,以提供拥塞预测,从而在ISPD 2016基准中最拥塞的设计中减少多达7%的路由长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Definition Routing Congestion Prediction for Large-Scale FPGAs
To speed up the FPGA placement and routing closure, we propose a novel approach to predict the routing congestion map for large-scale FPGA designs at the placement stage. After reformulating the problem into an image translation task, our proposed approach leverages recent advancement in generative adversarial learning to address the task. Particularly, state-of-the-art generative adversarial networks for high-resolution image translation are used along with well-engineered features extracted from the placement stage. Unlike available approaches, our novel framework demonstrates a capability of handling large-scale FPGA designs. With its superior accuracy, our proposed approach can be incorporated into the placement engine to provide congestion prediction resulting in up to 7% reduction in routed wirelength for the most congested design in ISPD 2016 benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信