批培养时变动态系统优化设计的强稳定性

Qi Yang, Qunbin Chen, Pai Zhang
{"title":"批培养时变动态系统优化设计的强稳定性","authors":"Qi Yang, Qunbin Chen, Pai Zhang","doi":"10.1109/ICNISC54316.2021.00155","DOIUrl":null,"url":null,"abstract":"In this study, we prove strong stability for a typical time-varying nonlinear dynamic system in batch culture, which is hard to obtain analytical solutions and equilibrium points. To this end, firstly, we construct a linear variational system to the nonlinear dynamic system. Secondly, we give a proof that the fundamental matrix solution to this dynamic system is bounded. Combined with the above two points, the strong stability for the nonlinear dynamic system is proved.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Stability of Optimal Design for a Time-varying Dynamic System in Batch Culture\",\"authors\":\"Qi Yang, Qunbin Chen, Pai Zhang\",\"doi\":\"10.1109/ICNISC54316.2021.00155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we prove strong stability for a typical time-varying nonlinear dynamic system in batch culture, which is hard to obtain analytical solutions and equilibrium points. To this end, firstly, we construct a linear variational system to the nonlinear dynamic system. Secondly, we give a proof that the fundamental matrix solution to this dynamic system is bounded. Combined with the above two points, the strong stability for the nonlinear dynamic system is proved.\",\"PeriodicalId\":396802,\"journal\":{\"name\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC54316.2021.00155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们证明了一个典型的时变非线性动态间歇培养系统的强稳定性,该系统很难得到解析解和平衡点。为此,首先对非线性动力系统构造一个线性变分系统。其次,证明了该动力系统的基本矩阵解是有界的。结合上述两点,证明了非线性动力系统的强稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Stability of Optimal Design for a Time-varying Dynamic System in Batch Culture
In this study, we prove strong stability for a typical time-varying nonlinear dynamic system in batch culture, which is hard to obtain analytical solutions and equilibrium points. To this end, firstly, we construct a linear variational system to the nonlinear dynamic system. Secondly, we give a proof that the fundamental matrix solution to this dynamic system is bounded. Combined with the above two points, the strong stability for the nonlinear dynamic system is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信