编队控制中被检测机器人的相对位置估计

Tsuyoshi Ogawa, K. Sakurama, Shintaro Nakatani, S. Nishida
{"title":"编队控制中被检测机器人的相对位置估计","authors":"Tsuyoshi Ogawa, K. Sakurama, Shintaro Nakatani, S. Nishida","doi":"10.9746/SICETR.55.181","DOIUrl":null,"url":null,"abstract":"In this paper, we address a relative position estimation problem for a line formation of multiple robots. The existing study assumed that the light of all distance sensors hits other robots, which does not always happen. Therefore, we propose a method for estimating the relative positions of the detected robots which is effective even if the light of distance sensors does not always hit the robots. We consider using information on the motion of the robots obtained by wireless communication. To fuse the information from the distance sensors and wireless sensors, the Extended Kalman Filter is employed. Finally, we verify the effectiveness of this method by a simulation.","PeriodicalId":416828,"journal":{"name":"Transactions of the Society of Instrument and Control Engineers","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relative Position Estimation of Detected Robots for Formation Control\",\"authors\":\"Tsuyoshi Ogawa, K. Sakurama, Shintaro Nakatani, S. Nishida\",\"doi\":\"10.9746/SICETR.55.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address a relative position estimation problem for a line formation of multiple robots. The existing study assumed that the light of all distance sensors hits other robots, which does not always happen. Therefore, we propose a method for estimating the relative positions of the detected robots which is effective even if the light of distance sensors does not always hit the robots. We consider using information on the motion of the robots obtained by wireless communication. To fuse the information from the distance sensors and wireless sensors, the Extended Kalman Filter is employed. Finally, we verify the effectiveness of this method by a simulation.\",\"PeriodicalId\":416828,\"journal\":{\"name\":\"Transactions of the Society of Instrument and Control Engineers\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Society of Instrument and Control Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9746/SICETR.55.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Society of Instrument and Control Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9746/SICETR.55.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们解决了一个由多个机器人组成的直线的相对位置估计问题。现有的研究假设所有距离传感器的光线都会照射到其他机器人上,但这种情况并不总是发生。因此,我们提出了一种估计被检测机器人相对位置的方法,即使距离传感器的光线并不总是照射到机器人上,这种方法也是有效的。我们考虑利用无线通信获得的机器人运动信息。为了融合距离传感器和无线传感器的信息,采用扩展卡尔曼滤波。最后,通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Position Estimation of Detected Robots for Formation Control
In this paper, we address a relative position estimation problem for a line formation of multiple robots. The existing study assumed that the light of all distance sensors hits other robots, which does not always happen. Therefore, we propose a method for estimating the relative positions of the detected robots which is effective even if the light of distance sensors does not always hit the robots. We consider using information on the motion of the robots obtained by wireless communication. To fuse the information from the distance sensors and wireless sensors, the Extended Kalman Filter is employed. Finally, we verify the effectiveness of this method by a simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信