{"title":"点缺陷和纳米孔对单层二硫化钼纳米片断裂行为的影响","authors":"Hongwei Bao, Y. Miao, F. Ma","doi":"10.1088/2632-959X/ac3635","DOIUrl":null,"url":null,"abstract":"Point defects and nanopores are inevitable and particularly noticeable in single-layer (SL) MoS2. Molecular dynamics (MD) simulations have been done to comprehensively study the influences of point defects and nanopores on tensile deformation behaviors of SLMoS2 nanosheets, and the dependences of fracture properties on defect type and concentration, pore size, temperature and strain rate are discussed. The formation energy of S vacancy (VS) is the lowest one, but that of VMoS6 is the highest one, corresponding to the highest and lowest fracture stress, respectively. The local stress concentration around point defects and nanopores might lead to the early bond breaking and subsequent nucleation of cracks and brittle fracture upon tensile loading. A modified Griffith criterion is proposed to describe the defect concentration and pore size dependent fracture stress and strain. These findings provide us an important guideline for the structural design of 2D materials in future applications.","PeriodicalId":118165,"journal":{"name":"Nano Express","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of point defects and nanopores on the fracture behaviors in single-layer MoS2 nanosheets\",\"authors\":\"Hongwei Bao, Y. Miao, F. Ma\",\"doi\":\"10.1088/2632-959X/ac3635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point defects and nanopores are inevitable and particularly noticeable in single-layer (SL) MoS2. Molecular dynamics (MD) simulations have been done to comprehensively study the influences of point defects and nanopores on tensile deformation behaviors of SLMoS2 nanosheets, and the dependences of fracture properties on defect type and concentration, pore size, temperature and strain rate are discussed. The formation energy of S vacancy (VS) is the lowest one, but that of VMoS6 is the highest one, corresponding to the highest and lowest fracture stress, respectively. The local stress concentration around point defects and nanopores might lead to the early bond breaking and subsequent nucleation of cracks and brittle fracture upon tensile loading. A modified Griffith criterion is proposed to describe the defect concentration and pore size dependent fracture stress and strain. These findings provide us an important guideline for the structural design of 2D materials in future applications.\",\"PeriodicalId\":118165,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959X/ac3635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959X/ac3635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of point defects and nanopores on the fracture behaviors in single-layer MoS2 nanosheets
Point defects and nanopores are inevitable and particularly noticeable in single-layer (SL) MoS2. Molecular dynamics (MD) simulations have been done to comprehensively study the influences of point defects and nanopores on tensile deformation behaviors of SLMoS2 nanosheets, and the dependences of fracture properties on defect type and concentration, pore size, temperature and strain rate are discussed. The formation energy of S vacancy (VS) is the lowest one, but that of VMoS6 is the highest one, corresponding to the highest and lowest fracture stress, respectively. The local stress concentration around point defects and nanopores might lead to the early bond breaking and subsequent nucleation of cracks and brittle fracture upon tensile loading. A modified Griffith criterion is proposed to describe the defect concentration and pore size dependent fracture stress and strain. These findings provide us an important guideline for the structural design of 2D materials in future applications.