优化遗传算法求解几何约束

Hua Yuan, Chunjiang Yu
{"title":"优化遗传算法求解几何约束","authors":"Hua Yuan, Chunjiang Yu","doi":"10.1109/ICAIE.2010.5641455","DOIUrl":null,"url":null,"abstract":"The geometric constraint solving can transform into the numerical optimization solving. In the paper introduce a hybrid approach that simultaneously applies Genetic Algorithm (GA), and tabu search (TS) to create a generally well-performing search heuristics, and combat the problem of premature convergence. This algorithm uses GA to search the area where the best solution may exist in the whole space, and then. When the algorithm approaches to the best solution and the search speed is too slow, we can change to the effective local search strategy—TS in order to enhance the ability of the GA on fine searching. It makes the algorithm get rid off the prematurity convergence situation. We apply this algorithm into the geometric constraint solving. The experiment shows that the hybrid algorithm has the effective convergence property and it can find the global best solution.","PeriodicalId":216006,"journal":{"name":"2010 International Conference on Artificial Intelligence and Education (ICAIE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization Genetic Algorithm for geometric constraint solving\",\"authors\":\"Hua Yuan, Chunjiang Yu\",\"doi\":\"10.1109/ICAIE.2010.5641455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometric constraint solving can transform into the numerical optimization solving. In the paper introduce a hybrid approach that simultaneously applies Genetic Algorithm (GA), and tabu search (TS) to create a generally well-performing search heuristics, and combat the problem of premature convergence. This algorithm uses GA to search the area where the best solution may exist in the whole space, and then. When the algorithm approaches to the best solution and the search speed is too slow, we can change to the effective local search strategy—TS in order to enhance the ability of the GA on fine searching. It makes the algorithm get rid off the prematurity convergence situation. We apply this algorithm into the geometric constraint solving. The experiment shows that the hybrid algorithm has the effective convergence property and it can find the global best solution.\",\"PeriodicalId\":216006,\"journal\":{\"name\":\"2010 International Conference on Artificial Intelligence and Education (ICAIE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Artificial Intelligence and Education (ICAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIE.2010.5641455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Artificial Intelligence and Education (ICAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIE.2010.5641455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

几何约束求解可以转化为数值优化求解。本文介绍了一种同时应用遗传算法(GA)和禁忌搜索(TS)的混合方法来创建一个性能良好的搜索启发式算法,并解决了过早收敛的问题。该算法利用遗传算法在整个空间中搜索可能存在最优解的区域,然后。当算法逼近最优解且搜索速度过慢时,可以采用有效的局部搜索策略- ts来增强遗传算法的精细搜索能力。使算法避免了早熟收敛的情况。将该算法应用于几何约束的求解中。实验表明,该混合算法具有有效的收敛性,能够找到全局最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization Genetic Algorithm for geometric constraint solving
The geometric constraint solving can transform into the numerical optimization solving. In the paper introduce a hybrid approach that simultaneously applies Genetic Algorithm (GA), and tabu search (TS) to create a generally well-performing search heuristics, and combat the problem of premature convergence. This algorithm uses GA to search the area where the best solution may exist in the whole space, and then. When the algorithm approaches to the best solution and the search speed is too slow, we can change to the effective local search strategy—TS in order to enhance the ability of the GA on fine searching. It makes the algorithm get rid off the prematurity convergence situation. We apply this algorithm into the geometric constraint solving. The experiment shows that the hybrid algorithm has the effective convergence property and it can find the global best solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信