基于CMAC神经网络的火花点火发动机爆震检测

K. Kamal, M. Farid, S. Mathavan
{"title":"基于CMAC神经网络的火花点火发动机爆震检测","authors":"K. Kamal, M. Farid, S. Mathavan","doi":"10.1109/ICRAI.2012.6413381","DOIUrl":null,"url":null,"abstract":"Knocking in SI (Spark Ignition) engines is one of the most addressable problems. If not detected in early stages, it causes a severe damage to an SI engine. Various techniques have been proposed so far, in order to detect early knock symptoms. This paper presents a novel approach to detect knocking using technique of Artificial Intelligence. A four stroke, single cylinder engine is simulated using GT Power engine simulation software. Data is generated through simulation for both knock and no-knock conditions. A CMAC (Cerebellar Model Articulation Controller) based neural network is then applied as an AI (Artificial Intelligence) tool to distinguish between knock and no-knock conditions. The results show a promising future for CMAC neural networks as a technique to detect knocking in SI engines.","PeriodicalId":105350,"journal":{"name":"2012 International Conference of Robotics and Artificial Intelligence","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of knocking in Spark Ignition (SI) engines using CMAC neural networks\",\"authors\":\"K. Kamal, M. Farid, S. Mathavan\",\"doi\":\"10.1109/ICRAI.2012.6413381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knocking in SI (Spark Ignition) engines is one of the most addressable problems. If not detected in early stages, it causes a severe damage to an SI engine. Various techniques have been proposed so far, in order to detect early knock symptoms. This paper presents a novel approach to detect knocking using technique of Artificial Intelligence. A four stroke, single cylinder engine is simulated using GT Power engine simulation software. Data is generated through simulation for both knock and no-knock conditions. A CMAC (Cerebellar Model Articulation Controller) based neural network is then applied as an AI (Artificial Intelligence) tool to distinguish between knock and no-knock conditions. The results show a promising future for CMAC neural networks as a technique to detect knocking in SI engines.\",\"PeriodicalId\":105350,\"journal\":{\"name\":\"2012 International Conference of Robotics and Artificial Intelligence\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference of Robotics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAI.2012.6413381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference of Robotics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAI.2012.6413381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在SI(火花点火)发动机爆震是最容易解决的问题之一。如果在早期阶段未发现,则会对SI引擎造成严重损坏。到目前为止,已经提出了各种技术,以检测早期的敲击症状。本文提出了一种利用人工智能技术进行敲击检测的新方法。利用GT Power发动机仿真软件对一台四冲程单缸发动机进行了仿真。通过模拟产生了爆震和无爆震两种情况的数据。然后将基于CMAC(小脑模型发音控制器)的神经网络作为AI(人工智能)工具应用于区分撞击和非撞击情况。结果表明,CMAC神经网络作为一种检测发动机爆震的技术具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of knocking in Spark Ignition (SI) engines using CMAC neural networks
Knocking in SI (Spark Ignition) engines is one of the most addressable problems. If not detected in early stages, it causes a severe damage to an SI engine. Various techniques have been proposed so far, in order to detect early knock symptoms. This paper presents a novel approach to detect knocking using technique of Artificial Intelligence. A four stroke, single cylinder engine is simulated using GT Power engine simulation software. Data is generated through simulation for both knock and no-knock conditions. A CMAC (Cerebellar Model Articulation Controller) based neural network is then applied as an AI (Artificial Intelligence) tool to distinguish between knock and no-knock conditions. The results show a promising future for CMAC neural networks as a technique to detect knocking in SI engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信