释义检测的混合方法

Phuc H. Duong, Hien T. Nguyen, H. Duong, K. Ngo, D. Ngo
{"title":"释义检测的混合方法","authors":"Phuc H. Duong, Hien T. Nguyen, H. Duong, K. Ngo, D. Ngo","doi":"10.1109/NICS.2018.8606845","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hybrid approach to the paraphrase detection task. The approach takes advantage of both feature-engineering and neural-based methods. First, we represent words and entities in a given sentence by using their pre-trained vectors. Then, those pre-trained vectors are encoded by a bidirectional long-short term memory network. The output matrix is fed into an attention network to obtain an attention vector. The final representation of the sentence is inner product of the matrix and the attention vector. We conduct experiments on the Microsoft Research Paraphrase corpus, a popular dataset used for benchmarking paraphrase detection methods. The experimental results show that our approach achieves competitive results.","PeriodicalId":137666,"journal":{"name":"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hybrid Approach to Paraphrase Detection\",\"authors\":\"Phuc H. Duong, Hien T. Nguyen, H. Duong, K. Ngo, D. Ngo\",\"doi\":\"10.1109/NICS.2018.8606845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a hybrid approach to the paraphrase detection task. The approach takes advantage of both feature-engineering and neural-based methods. First, we represent words and entities in a given sentence by using their pre-trained vectors. Then, those pre-trained vectors are encoded by a bidirectional long-short term memory network. The output matrix is fed into an attention network to obtain an attention vector. The final representation of the sentence is inner product of the matrix and the attention vector. We conduct experiments on the Microsoft Research Paraphrase corpus, a popular dataset used for benchmarking paraphrase detection methods. The experimental results show that our approach achieves competitive results.\",\"PeriodicalId\":137666,\"journal\":{\"name\":\"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS.2018.8606845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS.2018.8606845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一种用于意译检测任务的混合方法。该方法同时利用了特征工程和基于神经的方法。首先,我们使用预先训练好的向量来表示给定句子中的单词和实体。然后,用双向长短期记忆网络对这些预训练好的向量进行编码。将输出矩阵输入到注意力网络中,得到注意力向量。句子的最终表示是矩阵与注意向量的内积。我们在Microsoft Research释义语料库上进行了实验,这是一个用于对释义检测方法进行基准测试的流行数据集。实验结果表明,该方法取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Approach to Paraphrase Detection
In this paper, we present a hybrid approach to the paraphrase detection task. The approach takes advantage of both feature-engineering and neural-based methods. First, we represent words and entities in a given sentence by using their pre-trained vectors. Then, those pre-trained vectors are encoded by a bidirectional long-short term memory network. The output matrix is fed into an attention network to obtain an attention vector. The final representation of the sentence is inner product of the matrix and the attention vector. We conduct experiments on the Microsoft Research Paraphrase corpus, a popular dataset used for benchmarking paraphrase detection methods. The experimental results show that our approach achieves competitive results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信