V. Rizzoli, Giacomo Bichicchi, A. Costanzo, F. Donzelli, D. Masotti
{"title":"微型发电用多腔整流天线的计算机辅助设计","authors":"V. Rizzoli, Giacomo Bichicchi, A. Costanzo, F. Donzelli, D. Masotti","doi":"10.23919/eumc.2009.5296567","DOIUrl":null,"url":null,"abstract":"We introduce a compact, lightweight and highly efficient multi-resonator rectenna (rectifying antenna) designed to harvest the RF energy really obtainable in humanized environments. Such sources, radiated from cell phones, radio transmitters and Wi-Fi equipments, are ubiquitously available but have very low power densities, at different frequency bands, with unknown directions of incidence and polarization. In order to harvest a significant quantity of energy it is mandatory to put a very special care in the design of each part of the receiving/storing system. For this purpose a combination of resonant antennas, each one designed for a specific application-dependent frequency band, is optimised together with the rectifying circuit and the load. This is accomplished by a rigorous design tool, based on the concurrent use of nonlinear and electromagnetic CAD methods. Multi-source non linear simulation of the harvester in realistic operating conditions predicts a DC power of a few hundred μW, which represents the typical energy requirement of a sensor node.","PeriodicalId":148226,"journal":{"name":"2009 European Microwave Integrated Circuits Conference (EuMIC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"CAD of multi-resonator rectenna for micro-power generation\",\"authors\":\"V. Rizzoli, Giacomo Bichicchi, A. Costanzo, F. Donzelli, D. Masotti\",\"doi\":\"10.23919/eumc.2009.5296567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a compact, lightweight and highly efficient multi-resonator rectenna (rectifying antenna) designed to harvest the RF energy really obtainable in humanized environments. Such sources, radiated from cell phones, radio transmitters and Wi-Fi equipments, are ubiquitously available but have very low power densities, at different frequency bands, with unknown directions of incidence and polarization. In order to harvest a significant quantity of energy it is mandatory to put a very special care in the design of each part of the receiving/storing system. For this purpose a combination of resonant antennas, each one designed for a specific application-dependent frequency band, is optimised together with the rectifying circuit and the load. This is accomplished by a rigorous design tool, based on the concurrent use of nonlinear and electromagnetic CAD methods. Multi-source non linear simulation of the harvester in realistic operating conditions predicts a DC power of a few hundred μW, which represents the typical energy requirement of a sensor node.\",\"PeriodicalId\":148226,\"journal\":{\"name\":\"2009 European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eumc.2009.5296567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eumc.2009.5296567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CAD of multi-resonator rectenna for micro-power generation
We introduce a compact, lightweight and highly efficient multi-resonator rectenna (rectifying antenna) designed to harvest the RF energy really obtainable in humanized environments. Such sources, radiated from cell phones, radio transmitters and Wi-Fi equipments, are ubiquitously available but have very low power densities, at different frequency bands, with unknown directions of incidence and polarization. In order to harvest a significant quantity of energy it is mandatory to put a very special care in the design of each part of the receiving/storing system. For this purpose a combination of resonant antennas, each one designed for a specific application-dependent frequency band, is optimised together with the rectifying circuit and the load. This is accomplished by a rigorous design tool, based on the concurrent use of nonlinear and electromagnetic CAD methods. Multi-source non linear simulation of the harvester in realistic operating conditions predicts a DC power of a few hundred μW, which represents the typical energy requirement of a sensor node.