装配状态检测的两级组注意

Hangfan Liu, Yongzhi Su, J. Rambach, A. Pagani, D. Stricker
{"title":"装配状态检测的两级组注意","authors":"Hangfan Liu, Yongzhi Su, J. Rambach, A. Pagani, D. Stricker","doi":"10.1109/ISMAR-Adjunct51615.2020.00074","DOIUrl":null,"url":null,"abstract":"Assembly state detection, i.e., object state detection, has a critical meaning in computer vision tasks, especially in AR assisted assembly. Unlike other object detection problems, the visual difference between different object states can be subtle. For the better learning of such subtle appearance difference, we proposed a two-level group attention module (TGA), which consists of inter-group attention and intro-group attention. The relationship between feature groups as well as the representation within each feature group is simultaneously enhanced. We embedded the proposed TGA module in a popular object detector and evaluated it on two new datasets related to object state estimation. The result shows that our proposed attention module outperforms the baseline attention module.","PeriodicalId":433361,"journal":{"name":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"TGA: Two-level Group Attention for Assembly State Detection\",\"authors\":\"Hangfan Liu, Yongzhi Su, J. Rambach, A. Pagani, D. Stricker\",\"doi\":\"10.1109/ISMAR-Adjunct51615.2020.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assembly state detection, i.e., object state detection, has a critical meaning in computer vision tasks, especially in AR assisted assembly. Unlike other object detection problems, the visual difference between different object states can be subtle. For the better learning of such subtle appearance difference, we proposed a two-level group attention module (TGA), which consists of inter-group attention and intro-group attention. The relationship between feature groups as well as the representation within each feature group is simultaneously enhanced. We embedded the proposed TGA module in a popular object detector and evaluated it on two new datasets related to object state estimation. The result shows that our proposed attention module outperforms the baseline attention module.\",\"PeriodicalId\":433361,\"journal\":{\"name\":\"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

装配状态检测,即物体状态检测,在计算机视觉任务中,特别是在AR辅助装配中具有至关重要的意义。与其他物体检测问题不同,不同物体状态之间的视觉差异可能很微妙。为了更好地学习这种细微的外观差异,我们提出了一种两级群体注意模块(TGA),包括群体间注意和群体内注意。同时增强了特征组之间的关系以及每个特征组内部的表示。我们将提出的TGA模块嵌入到一个流行的目标检测器中,并在两个与目标状态估计相关的新数据集上对其进行了评估。结果表明,我们提出的注意力模块优于基准注意力模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TGA: Two-level Group Attention for Assembly State Detection
Assembly state detection, i.e., object state detection, has a critical meaning in computer vision tasks, especially in AR assisted assembly. Unlike other object detection problems, the visual difference between different object states can be subtle. For the better learning of such subtle appearance difference, we proposed a two-level group attention module (TGA), which consists of inter-group attention and intro-group attention. The relationship between feature groups as well as the representation within each feature group is simultaneously enhanced. We embedded the proposed TGA module in a popular object detector and evaluated it on two new datasets related to object state estimation. The result shows that our proposed attention module outperforms the baseline attention module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信