基于颜色纹理特征提取和反向传播神经网络的蜡染图案分类

N. Suciati, Winny Adlina Pratomo, D. Purwitasari
{"title":"基于颜色纹理特征提取和反向传播神经网络的蜡染图案分类","authors":"N. Suciati, Winny Adlina Pratomo, D. Purwitasari","doi":"10.1109/IIAI-AAI.2014.108","DOIUrl":null,"url":null,"abstract":"Batik is an Indonesian's traditional cloth which has been recognized as one of the world cultural heritage. Currently, there are hundreds of different batik motif which can be classified into 7 groups, i.e. Parang, Ceplok, Lereng, Megamendung, Semen, Lunglungan, and Buketan. This research develops a software to automatically identify motifs of batik image using color-texture-based feature extraction and backpropagation neural network. Color and texture features of batik image is extracted using combination of Color Co-occurence Matrix, Different Between Pixels of Scan Pattern, and Color Histogram for K-Means methods. The extracted features vectors are furthermore classified into motifs using Backpropagation Neural Network. The experiment shows that the software can recognize batik motifs quite well, with rate of Tanimoto Distance 0,37.","PeriodicalId":432222,"journal":{"name":"2014 IIAI 3rd International Conference on Advanced Applied Informatics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Batik Motif Classification Using Color-Texture-Based Feature Extraction and Backpropagation Neural Network\",\"authors\":\"N. Suciati, Winny Adlina Pratomo, D. Purwitasari\",\"doi\":\"10.1109/IIAI-AAI.2014.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batik is an Indonesian's traditional cloth which has been recognized as one of the world cultural heritage. Currently, there are hundreds of different batik motif which can be classified into 7 groups, i.e. Parang, Ceplok, Lereng, Megamendung, Semen, Lunglungan, and Buketan. This research develops a software to automatically identify motifs of batik image using color-texture-based feature extraction and backpropagation neural network. Color and texture features of batik image is extracted using combination of Color Co-occurence Matrix, Different Between Pixels of Scan Pattern, and Color Histogram for K-Means methods. The extracted features vectors are furthermore classified into motifs using Backpropagation Neural Network. The experiment shows that the software can recognize batik motifs quite well, with rate of Tanimoto Distance 0,37.\",\"PeriodicalId\":432222,\"journal\":{\"name\":\"2014 IIAI 3rd International Conference on Advanced Applied Informatics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IIAI 3rd International Conference on Advanced Applied Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2014.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IIAI 3rd International Conference on Advanced Applied Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2014.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

蜡染是印尼的一种传统布料,已被认定为世界文化遗产之一。目前,有数百种不同的蜡染图案,可分为7类,即Parang, Ceplok, Lereng, Megamendung, Semen, Lunglungan和Buketan。本研究开发了一种基于颜色纹理特征提取和反向传播神经网络的蜡染图像图案自动识别软件。结合颜色共现矩阵、扫描模式像素差和K-Means颜色直方图提取蜡染图像的颜色和纹理特征。利用反向传播神经网络对提取的特征向量进行分类。实验表明,该软件能较好地识别蜡染图案,谷本距离为0.37。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Batik Motif Classification Using Color-Texture-Based Feature Extraction and Backpropagation Neural Network
Batik is an Indonesian's traditional cloth which has been recognized as one of the world cultural heritage. Currently, there are hundreds of different batik motif which can be classified into 7 groups, i.e. Parang, Ceplok, Lereng, Megamendung, Semen, Lunglungan, and Buketan. This research develops a software to automatically identify motifs of batik image using color-texture-based feature extraction and backpropagation neural network. Color and texture features of batik image is extracted using combination of Color Co-occurence Matrix, Different Between Pixels of Scan Pattern, and Color Histogram for K-Means methods. The extracted features vectors are furthermore classified into motifs using Backpropagation Neural Network. The experiment shows that the software can recognize batik motifs quite well, with rate of Tanimoto Distance 0,37.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信